Weak Symmetry Breaking and Simplex Path Demonochromatizing Colloquium

Jan-Philipp Litza

20.03.2015

- 1 Distributed Computing
- 2 Weak Symmetry Breaking
- 3 Simplex Path Demonochromatizing
 - Algorithm by Kozlov
 - Idea: Global Approach

1 Distributed Computing

2 Weak Symmetry Breaking

3 Simplex Path Demonochromatizing

- Algorithm by Kozlov
- Idea: Global Approach

Model

Processes p_0, p_1, \ldots, p_n (e.g. computers, processors, humans)

- communicate to solve a common task
- have process IDs/names $0, \ldots, n \in \Pi$ (or $\{\bullet, \bullet, \bullet\}$), input values $v_0, \ldots, v_n \in V^{in}$ and output values $o_0, \ldots, o_n \in V^{out}$.

Assumptions

Asynchronous Every process acts as fast as it can or wants Wait-Free No process is allowed to wait for another one

Rank-Symmetric Process IDs are only compared to each other, not used as absolute values

Model

Processes p_0, p_1, \ldots, p_n (e.g. computers, processors, humans)

- communicate to solve a common task
- have process IDs/names $0, \ldots, n \in \Pi$ (or $\{\bullet, \bullet, \bullet\}$), input values $v_0, \ldots, v_n \in V^{in}$ and output values $o_0, \ldots, o_n \in V^{out}$.

Assumptions

Asynchronous Every process acts as fast as it can or wants Wait-Free No process is allowed to wait for another one $\implies n$ processes can silently crash Rank-Symmetric Process IDs are only compared to each other, not used as absolute values

Model

Processes p_0, p_1, \ldots, p_n (e.g. computers, processors, humans)

- communicate to solve a common task
- have process IDs/names $0, \ldots, n \in \Pi$ (or $\{\bullet, \bullet, \bullet\}$), input values $v_0, \ldots, v_n \in V^{in}$ and output values $o_0, \ldots, o_n \in V^{out}$.

Assumptions

Asynchronous Every process acts as fast as it can or wants Wait-Free No process is allowed to wait for another one $\implies n$ processes can silently crash Rank-Symmetric Process IDs are only compared to each other, not used as absolute values

Input/Output Complexes

Configuration: Assignment of values/states to processes

- Not all input configurations might be valid
- Processes might crash even before starting
 - \Rightarrow every subset of a valid input configuration is valid again
- \Rightarrow Model input configurations as pure simp. comp. $\mathcal{I} \subseteq 2^{\Pi \times V^{\text{in}}}$

Input/Output Complexes

Configuration: Assignment of values/states to processes

- Not all input configurations might be valid
- Processes might crash even before starting
 - \Rightarrow every subset of a valid input configuration is valid again
- \Rightarrow Model input configurations as pure simp. comp. $\mathcal{I} \subseteq 2^{\Pi \times V^{\text{in}}}$

Input/Output Complexes

Configuration: Assignment of values/states to processes

- Not all input configurations might be valid
- Processes might crash even before starting
 - \Rightarrow every subset of a valid input configuration is valid again
- \Rightarrow Model input configurations as pure simp. comp. $\mathcal{I} \subseteq 2^{\Pi \times V^{\text{in}}}$

Distributed Computing Weak Symmetry Breaking Simplex Path Demonochromatizing

Tasks

What output configurations may result from an input configuration?

 $\Delta\colon \mathcal{I}\to 2^{\mathcal{O}}$

rigid $\Delta(\sigma)$ is pure of dimension dim σ carrier map $\tau \subseteq \sigma \in \mathcal{I} \Rightarrow \Delta(\tau) \subseteq \Delta(\sigma) \subseteq \mathcal{O}$ name-preserving $\operatorname{pr}_{\Pi}(\sigma) = \bigcup_{\tau \in \Delta(\sigma)} \operatorname{pr}_{\Pi}(\tau)$

Protocol Immediate Snapshots

- Communication happens in a predetermined number of layers/rounds
- Each layer has its own set of shared memory **storage registers**, one for each process
- A process executes a round by atomically writing to its own and reading all registers of its current round

Basic Chromatic Subdivision

Basic Chromatic Subdivision

Basic Chromatic Subdivision

Computability

Theorem (Anonymous Computability, Herlihy and Shavit 1999) A rank-symmetric decision task $(\mathcal{I}, \mathcal{O}, \Delta)$ has a wait-free rank-symmetric protocol using immediate snapshots if and only if there exists an integer K and a color-preserving simplicial map

$$\delta \colon \chi^{\mathsf{K}}(\mathcal{I}) \to \mathcal{O}$$

such that $\delta \circ \chi^{\kappa}$ is carried by Δ .

Theorem (Herlihy and Shavit 1999)

If \mathcal{B} is a chromatic subdivision of a complex \mathcal{A} , then there exists $K \ge 0$ and a color- and carrier-preserving simplicial map $\chi^{K}(\mathcal{A}) \to \mathcal{B}.$

Computability

Theorem (Anonymous Computability, Herlihy and Shavit 1999) A rank-symmetric decision task $(\mathcal{I}, \mathcal{O}, \Delta)$ has a wait-free rank-symmetric protocol using immediate snapshots if and only if there exists a subdivision $\Psi(\mathcal{I})$ and a color-preserving simplicial map

$$\delta \colon \Psi(\mathcal{I}) \to \mathcal{O}$$

such that $\delta \circ \Psi$ is carried by Δ .

Theorem (Herlihy and Shavit 1999)

If \mathcal{B} is a chromatic subdivision of a complex \mathcal{A} , then there exists $K \ge 0$ and a color- and carrier-preserving simplicial map $\chi^{K}(\mathcal{A}) \to \mathcal{B}.$

1 Distributed Computing

2 Weak Symmetry Breaking

3 Simplex Path Demonochromatizing

- Algorithm by Kozlov
- Idea: Global Approach

Weak Symmetry Breaking

Each of n + 1 processes is assigned a unique process ID and has to decide on a boolean output value just by comparing its process ID with the others, such that if all processes participate, each value is output by at least one process.

$$\Pi = [n]$$

$$V^{in} = \{\bot\}$$

$$\mathcal{I} = 2^{\Pi \times V^{in}} = \sigma^{(n)}$$

$$V^{out} = [1]$$

$$\mathcal{O} = \{\tau \in 2^{\Pi \times V^{out}} : (|\operatorname{pr}_{\Pi}| \leq n) \lor (\operatorname{pr}_{V^{out}} = [1])\}$$

$$\Delta , \text{maximal''}$$

Weak Symmetry Breaking

Each of n + 1 processes is assigned a unique process ID and has to decide on a boolean output value just by comparing its process ID with the others, such that if all processes participate, each value is output by at least one process.

Binary Labeling

Binary Labeling

Non-monochromatic subdivision, but not rank-symmetric!

Distributed Computing Weak Symmetry Breaking Simplex Path Demonochromatizing

Roadmap

- Generate equally many positively and negatively oriented 0-monochromatic *n*-simplices by subdividing rank-symmetrically
- 2. Pick two 0-monochromatic *n*-simplices σ and σ' of opposite orientation
- 3. Find a sequence $\sigma = \sigma_1, \ldots, \sigma_\ell = \sigma'$ (simplex path) of *n*-simplices connecting them, where
 - $\sigma_{i,i+1} \coloneqq \sigma_i \cap \sigma_{i+1}$ is an (n-1)-face of both, and
 - only σ_1 and σ_ℓ are monochromatic
- 4. Demonochromatize this simplex path without changing its boundary

Roadmap

- Generate equally many positively and negatively oriented 0-monochromatic *n*-simplices by subdividing rank-symmetrically
- 2. Pick two 0-monochromatic *n*-simplices σ and σ' of opposite orientation
- 3. Find a sequence $\sigma = \sigma_1, \ldots, \sigma_\ell = \sigma'$ (simplex path) of *n*-simplices connecting them, where
 - $\sigma_{i,i+1} \coloneqq \sigma_i \cap \sigma_{i+1}$ is an (n-1)-face of both, and
 - only σ_1 and σ_ℓ are monochromatic
- 4. Demonochromatize this simplex path without changing its boundary

Problem: Not possible in parallel!

1 Distributed Computing

2 Weak Symmetry Breaking

3 Simplex Path Demonochromatizing

- Algorithm by Kozlov
- Idea: Global Approach

Simplex Path

Simplex Path

 $C \in [n]^{\ell-1}$ Which vertices are "flipped"? $V \in [1]^{\ell-1}$ What label does the flipped vertex get assigned? $I \in [1]^{[n]}$ What labels does the first simplex get assigned?

Example:

1. Subdivide $\sigma_{m,m+1}$ using basic chromatic subdivision

Example: m = 2,

- 1. Subdivide $\sigma_{m,m+1}$ using basic chromatic subdivision
- 2. Assign boolean labels to new vertices according to

$$D = (d_0, \ldots, d_{C_m-1}, -, d_{C_m+1}, \ldots, d_n)$$

Example: m = 2, D = (1, -, 0),

- 1. Subdivide $\sigma_{m,m+1}$ using basic chromatic subdivision
- 2. Assign boolean labels to new vertices according to

$$D = (d_0,\ldots,d_{C_m-1},-,d_{C_m+1},\ldots,d_n)$$

3. Cone to $\sigma_m \bigtriangleup \sigma_{m+1}$

Example: m = 2, D = (1, -, 0),

- 1. Subdivide $\sigma_{m,m+1}$ using basic chromatic subdivision
- 2. Assign boolean labels to new vertices according to

$$D = (d_0, \ldots, d_{C_m-1}, -, d_{C_m+1}, \ldots, d_n)$$

- 3. Cone to $\sigma_m \bigtriangleup \sigma_{m+1}$
- 4. Re-route path according to *n*-cube-path $Q = (q_1, \ldots, q_t)$

Example:
$$m = 2$$
, $D = (1, -, 0)$, $Q = (0, 2, 1, 2, 0)$
Edge Expansion

- 1. Subdivide $\sigma_{m,m+1}$ using basic chromatic subdivision
- 2. Assign boolean labels to new vertices according to

$$D = (d_0, \ldots, d_{C_m-1}, -, d_{C_m+1}, \ldots, d_n)$$

- 3. Cone to $\sigma_m \bigtriangleup \sigma_{m+1}$
- 4. Re-route path according to *n*-cube-path $Q = (q_1, \ldots, q_t)$

Example:
$$m = 1$$

Edge Expansion

- 1. Subdivide $\sigma_{m,m+1}$ using basic chromatic subdivision
- 2. Assign boolean labels to new vertices according to

$$D = (d_0, \ldots, d_{C_m-1}, -, d_{C_m+1}, \ldots, d_n)$$

- 3. Cone to $\sigma_m \bigtriangleup \sigma_{m+1}$
- 4. Re-route path according to *n*-cube-path $Q = (q_1, \ldots, q_t)$

Example:
$$m=1,\ D=(1,\ldots,1)$$

Example:

Distributed Computing Weak Symmetry Breaking Simplex Path Demonochromatizing

• Subdivide σ_m using basic chromatic subdivision

Example:

- Subdivide σ_m using basic chromatic subdivision
- Assign boolean labels to new vertices according to $D = (d_0, \ldots, d_n)$

Example: D = (0, 1, 0),

- Subdivide σ_m using basic chromatic subdivision
- Assign boolean labels to new vertices according to $D = (d_0, \ldots, d_n)$
- Re-route path according to *n*-cube-loop $Q = (q_1, \ldots, q_t)$

Example: $D = (0, 1, 0), \ Q = (0, 1, 2, 0, 1, 2)$

Height Graph

$$\begin{array}{l} h_i \coloneqq \#(1, B(\sigma_i)) \\ \bullet \text{ Analogously: } h_{i,i+1} \coloneqq \#(1, B(\sigma_{i,i+1})) \\ \text{Vertices } (i, h_i) \text{ for } i = 1, \dots, \ell \\ \text{Edges } \{(i, h_i), (i+, h_{i+1})\} \text{ for } i = 1, \dots, \ell - 1 \\ \text{Label edge } \{(i, h_i), (i+1, h_{i+1})\} \text{ with } V_i \text{ if } h_i = h_{i+1} \end{array}$$

1 Distributed Computing

2 Weak Symmetry Breaking

3 Simplex Path Demonochromatizing

- Algorithm by Kozlov
- Idea: Global Approach

Summit Move

- Choose (odd) m such that $h_{m-1} < h_m > h_{m+1}$
- $B(\sigma_m) = (1, 1, 0, e_3, \dots, e_n)$ (up to $S_{[n]}$ -action)
- Vertex expansion of σ_m with $D := (0, 0, 0, \overline{e_3}, \dots, \overline{e_n})$

 $Q\coloneqq (0,1,2,0,2,1)$

Plateau Move

- Choose m such that $h_{m-1} < h_m = h_{m+1}$
- $(C_{m-1}, C_m, C_{m+1}) = (0, 1, 2)$ or (0, 1, 0) (up to $S_{[n]}$ -action)
- Edge expansion of $\sigma_{m,m+1}$ with $D \coloneqq (0, -, e_2, \dots, e_n)$

1 Distributed Computing

2 Weak Symmetry Breaking

3 Simplex Path Demonochromatizing

- Algorithm by Kozlov
- Idea: Global Approach

• Brute-force: Why not simply apply standard chromatic subdivision everywhere?

- Brute-force: Why not simply apply standard chromatic subdivision everywhere?
 - # Boundary must stay unmodified!

- Brute-force: Why not simply apply standard chromatic subdivision everywhere?
 - # Boundary must stay unmodified!

- Brute-force: Why not simply apply standard chromatic subdivision everywhere?
 - & Boundary must stay unmodified!
- Labeling?

- Brute-force: Why not simply apply standard chromatic subdivision everywhere?
 - & Boundary must stay unmodified!
- Labeling? All 0 to maximize pairable simplices!

Problems

Possible Directions

- Adapt "exhaustive expansion" technique from Kozlov 2015
- Search for graph matchings

Distributed Computing Weak Symmetry Breaking Simplex Path Demonochromatizing

References

- Herlihy, M. and N. Shavit (Nov. 1999). "The Topological Structure of Asynchronous Computability." In: J. ACM 46.6, pp. 858–923.
 Attiya, H. et al. (2013). "Upper Bound on the Complexity of Solving Hard Renaming." In: Proceedings of the 2013 ACM Symposium on Principles of Distributed Computing. PODC '13. Montréal, Québec, Canada: ACM, pp. 190–199.
- Kozlov, D. N. (Feb. 2015). "Weak symmetry breaking and abstract simplex paths." In: Mathematical Structures in Computer Science FirstView, pp. 1–31.
- Castañeda, A. and S. Rajsbaum (Mar. 2012). "New Combinatorial Topology Bounds for Renaming: The Upper Bound." In: J. ACM 59.1, 3:1–3:49.

Tasks

Example $\Pi = [2], V^{in} = V^{out} = [1], \mathcal{I} = \Pi \times V^{in}, \mathcal{O} = \Pi \times V^{out}$ Task: Output the input value of any process $\Delta(\{0 \mapsto x, 1 \mapsto x, 2 \mapsto x\}) = 2^{\{0 \mapsto x, 1 \mapsto x, 2 \mapsto x\}}$ $\Delta(\{a \mapsto x, b \mapsto x\}) = 2^{\{a \mapsto x, b \mapsto x\}}$ $\Delta(\{a \mapsto x\}) = \{a \mapsto x\}$ for all other $\sigma \in \mathcal{I}: \quad \Delta(\sigma) = \{\mathcal{O} \subseteq \mathcal{O} \mid \mathsf{pr}_{\Pi} \mathcal{O} = \mathsf{pr}_{\Pi} \sigma\}$

First Subdivision Step

First Subdivision Step

Appendix
First Subdivision Step

Appendix

First Subdivision Step

Appendix

First Subdivision Step

Appendix

Subdivision Point

Choose m minimal such that $h_{m+1,m+2}\leqslant m-2$ Then $m\leqslant \frac{\ell}{2}$ and

Case Analysis

Case 1
$$h_m \neq h_{m+1}$$
 (Asymmetric)
Case 2 $h_m = h_{m+1} = h_{m,m+1}$ (Symmetric 0)
Case 3 $h_m = h_{m+1} \neq h_{m,m+1}$ (Symmetric 1)

$$\begin{array}{c} m-2 \underbrace{m-1}_{m-2} \underbrace{m-1}_{m-2} \underbrace{m-1}_{m-2} \underbrace{m-2}_{m-2} \underbrace{m-2}_{m-3} \\ - \underbrace{m-1,m}_{m-1,m} h_m \underbrace{h_{m,m+1}}_{m,m+1} h_{m+1} \underbrace{h_{m+1,m+2}}_{m-1,m} - \end{array}$$

Appendix

Appendix

Appendix

$$h_{m} = h_{m+1} = h_{m,m+1} \in \{m-2, m-1\}$$

$$a_{m-1} = h_{m,m+1} \in \{m-2, m-1\}$$

$$a_{m-2} = \frac{m-1}{m-2} = \frac{m-1}{m-2} = \frac{m-2}{m-3}$$

$$a_{m-3} = \frac{m-1}{m-2} = \frac{m-1}{m-2} = \frac{m-2}{m-3}$$

$$a_{m-1,m} = h_{m} = \frac{h_{m,m+1}}{h_{m,m+1}} = h_{m+1} = \frac{h_{m+1,m+2}}{h_{m+1,m+2}}$$

Appendix

$$h_m = h_{m+1} = h_{m,m+1} \in \{m-2, m-1\}$$

 $- \underbrace{\qquad \qquad }_{h_{m-1,m}} h_m \underbrace{\qquad \qquad }_{h_{m,m+1}} h_{m+1} \underbrace{\qquad \qquad }_{h_{m+1,m+2}} -$

Appendix

$$h_m = h_{m+1} = h_{m,m+1} \in \{m-2, m-1\}$$

Appendix

$$h_m = h_{m+1} = h_{m,m+1} \in \{m-2, m-1\}$$

Appendix

$$h_m = h_{m+1} = h_{m,m+1} \in \{m-2, m-1\}$$

Appendix

$$h_m = h_{m+1} \neq h_{m,m+1}$$

Flatten a unit

- Low admissible path
- Choose even m such that $V_m \coloneqq B(\sigma_{m+1})_{C_m} = 1$
- $(C_{m-1}, C_m, C_{m+1}) = (1, 0, 1)$ or (1, 0, 2) (up to $S_{[n]}$ -action)
- Edge exp. of $\sigma_{m,m+1}$ w/ $D \coloneqq (-,0,\ldots,0)$

Q := (1, 2, 0, 2, 1) or (1, 2, 0, 1, 2)

Appendix

Eliminate a unit

- Low admissible path
- Choose (odd) m such that $V_m \coloneqq B(\sigma_{m+1})_{C_m} = 1$
- $(C_{m-1}, C_m) = (1, 0)$ (up to $S_{[n]}$ -action)
- Vertex expansion of σ_m with $D \coloneqq (0, 0, 1, \dots, 1)$

$$Q \coloneqq (1,0,1,0)$$

Shorten generic zeros

- Low admissible path
- Assume V = (1,0,0,0,V₅,...
- $C = (0, 1, 2, 3, \ldots)$ (up to $S_{[n]}$ -action)
- Edge expansion on σ_3 with $D \coloneqq (0, 0, -, 0, 1, \dots, 1)$

$$Q := (1, 0, 3, 2, 1, 0, 3)$$

Shorten special zeros

- Low admissible path
- Assume $V = (1, 0, 0, 0, V_5, ...$
- $C = (0, 1, 2, 1, \ldots)$ (up to $S_{[n]}$ -action)
- Edge expansion on σ_3 with $D \coloneqq (0, 0, -, 1, 1, \dots, 1)$

$$Q \coloneqq (1,0,2,0,1)$$

