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Notations and Conventions

δi,j :=

1 if i = j

0 else

[n] := {0, 1, . . . , n} ⊂N

[a, b] := {x ∈ R | a 6 x 6 b}

n-tuple X := (x1, x2, . . . , xn)

[n]-tuple X := (x0, x1, x2, . . . , xn)

prA : A× B→ A, (a, b) 7→ a

ϕ(A′) := {ϕ(a) | a ∈ A′} for ϕ : A→ B, A′ ⊆ A

A− a := A \ {a} for a ∈ A

#(s, x) := |{i | xi = s}| for a tuple x

#(s, B(X)) := |{x ∈ X | B(x) = s}| for a set X

A4 B := (A ∪ B) \ (A ∩ B) for sets A, B

b := 1− b for a boolean value b ∈ [1]

v





1 Motivation

In the field of distributed computing, one cares about a seemingly simple question:

What can be computed by two or more processes by communicating with
each other?

Of course, such a question can only be answered with more concrete specifications on
what “computing” and “communicating” means. There are several models that define
their exact meanings and result in different answers to the above question. Especially
when we allow processes to crash or misbehave, this is a more complex question than
one would expect at first glance, as can be seen by the amount of research that is being
done since [PSL80] was one of the first papers to consider this kind of problem.

Soon, a new approach to the topic developed: Using combinatorial topology. In the form
of graph connectivity it has first proven to be a helpful tool to model the communication
of processes in [FLP85]. Since then, much more work has followed in this field, using
well-known topological facts to prove the possibilities and mainly impossibilities of
distributed computing. [SZ00] is one such example, linking the Brouwer fixed-point
theorem to the impossibility of n + 1 processes agreeing on any less than n + 1 distinct
values. We will study this application to distributed computing as well as the model of
communication and computing in Section 2.2, after we will have introduced the needed
basics of combinatorial topology in Section 2.1.

Of all the tasks that such processes could attempt to solve, we care about a particular
one in Chapter 3, called the Weak Symmetry Breaking: Can n + 1 processes, by com-
municating according to a given model, each decide on one of two options such that in
the end each option is chosen at least once? We restrict the question to cases where all
processes decide on a value, which is required by the possibility that processes can fail,
in which case they do not decide on a value. Because this is unsolvable in some cases if
every process starts with exactly the same parameters—think of all of them executing
at the same time, which makes the state of every process indistinguishable from all the
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1 Motivation

others—we loosen the task a little bit and allow them to have unique integral identifiers
which they can compare.

By itself this task probably would not have gotten much attention. But a more realistic
problem, K-renaming, can be solved for K = 2n− 1 if and only if one knows how to
solve the Weak Symmetry Breaking [GRH06]. In K-renaming, n + 1 processes start with
process identifiers from a large namespace of size N � n + 1 and want to “rename”
themselves uniquely to a much smaller namespace of size K + 1� N.

The Renaming Problem has been studied numerous times, and some confusion about
its true answer arose. While early results showed that this task is (wait-free) solvable
if K > 2n and unsolvable if K 6 n + 1 [ABND+90], the domain n + 1 < K < 2n
was a bit unclear. After several supposed proofs that the task was unsolvable in all
these intermediate cases, [CR12] were the first to show that it actually is solvable for
K = 2n− 1 if n + 1 is not a prime power.

The reason we care about Weak Symmetry Breaking is its reformulation in the language
of combinatorial topology. Along the way, very simple combinatorial structures called
“simplex paths” arise that need to be “demonochromatized”. This problem can be
quite easily stated given the necessary terminology, as we will do in the beginning of
Chapter 4. Its existing solutions that are surveyed later in that chapter, however, are
more or less complex and hard to fully comprehend and verify. Furthermore, their
earlier formulations used languages that differed from one another. We unified the
terminology and fixed some smaller errors in our version.

Finally, we will begin to develop a possible alternative. Furthermore, we present a
round complexity estimation not only for the first algorithm, for which it was done in
[ACHP13] already, but also a novel one for the second algorithm that was developed in
[Koz15].
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2 Prerequisites

2.1 Combinatorial Topology

First we need to establish a basic framework of definitions. Those familiar with simplicial
complexes can easily skip this section, which we will keep as short as possible, assuming
that most readers are familiar with most of the concepts. Those who wish for a more
detailed introduction may be interested in [Koz08, Chap. 1] where almost all of these
concepts can be found with more detailed explanations, and in [HKR13, Chap. 3] for the
parts more specific to our application.

While topology in general tries to distinguish important properties of a space, like
whether two lines cross each other or not, from unimportant ones, like the angle at
which they cross, combinatorial topology deals with simple tools that are all based on
counting properties associated to spaces.

2.1.1 Simplicial complexes

The tool that is most important to us is the ABSTRACT
SIMPLICIAL
COMPLEX

simplicial complex. In its abstract form, given a
finite ground set V(A), a simplicial complex on V(A) is simply a subset of its power set
A ⊂ 2V(A) such that

(1) A is closed under taking subsets, i.e. X ∈ A if X ⊂ Y ∈ A, and
(2) A contains all one-element subsets of V(A), i.e. {v} ∈ A for all v ∈ V(A).

The condition (2) keeps the ground set as small as possible and can also be formulated
as V(A) = ⋃A. Another simplicial complex B is called a SUBCOMPLEXsubcomplex of A if B ⊆ A. In
particular, B has to be based on a ground set contained in that ofA, i.e. V(B) ⊆ V(A).

Each element of V(A) is called a VERTEXvertex, each element σ ∈ A with |σ| = n + 1 a simplex
of dimension n, an n-SIMPLEXn-simplex or simply a simplex. We set dim(σ) := n = |σ| − 1 and often
denote an n-simplex by σn with a superscript n to indicate its dimension, especially
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2 Prerequisites

when simplices of different dimensions are involved. When σ ⊆ τ ∈ A, then σ is called
a(CO-)FACE face of τ, if ∅ ( σ ( τ even a proper face. The other way round, τ is called a co-face of σ

in this constellation. If a simplex has no co-faces, it is called aFACET facet of A. The dimension
dim(A) := maxσ∈A dim(σ) of the whole simplicial complex A is the largest dimension
of its simplices. If all facets have the same dimension n, the simplicial complex is called

PURE pure and the codimension of a simplex σ is codim(σ) := dim(A)− dim(σ). The union of
all simplices σ ∈ A with codim(σ) = 1 that have only one co-face is called theBOUNDARY boundary
of A, and we denote it by ∂A. Note that in a pure simplicial complex, one co-face is the
minimum for all simplices with a codimension of at least one.

By abuse of notation, we will sometimes call a simplicial complex that only consists of a
single n-simplex and all its faces an n-simplex as well and denote it simply by σ or σn.
For example, ∂ σ is the union of all proper faces of σ.

Given two abstract simplicial complexes A and B on ground sets V(A) and V(B),
respectively, every map ϕ : V(A)→ V(B) is called aVERTEX MAP vertex map. Only those vertex maps
who preserve simplices, i.e. {ϕ(v1), · · · , ϕ(vm)} is a simplex of B if {v1, v2, . . . , vm} is a
simplex of A, are calledSIMPLICIAL MAPS simplicial maps. We will also write ϕ : A → B if ϕ is a simplicial
map, because thanks to this restriction, not only vertices are mapped to vertices but also
simplices are mapped to simplices if we apply the usual convention for applying maps
to subsets of their domains (see Notations and Conventions). A simplicial map that
preserves dimensions, i.e. dim(ϕ(σ)) = dim(σ) for every simplex σ, is calledRIGID rigid.

If we have two simplicial maps ϕ : V(A) → V(B) and ψ : V(B) → V(A) such that
ψ ◦ ϕ = idV(A) and ϕ ◦ ψ = idV(B), we call A and BISOMORPHIC isomorphic and write A ∼= B. In
this case, A and B have the same structure and are, somehow, interchangeable. This
indicates that the actual ground set only plays a minor role and can be exchanged for
any other set of the same size, as long as the simplices are modified accordingly.

Before we continue with more terminology, we will have a look at a more visual rep-
resentation of a simplicial complex. This time, we start with the simplices: AGEOMETRIC

n-SIMPLEX geometric
n-simplex σ is the convex hull of n + 1 affinely independent points {x0, x1, . . . , xn} in Rd

with d > n+ 1, called the vertices of σ. The convex hull of some points {y0, y1, . . . , yn} ⊂ Rd

is defined as

Conv({y0, y1, . . . , yn}) :=

{
n

∑
i=0

tiyi ∈ Rd

∣∣∣∣∣ ∀i ∈ [n] : ti ∈ [0, 1] and
n

∑
i=0

ti = 1

}
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2.1 Combinatorial Topology

(a) A geometric 0-simplex. (b) A geometric 1-simplex.

(c) A geometric 2-simplex. (d) A geometric 3-simplex.

Figure 2.1: Examples of geometric simplices up to dimension 3.

and being affinely independent means that no point xi is contained in the convex
hull of the others. This way, a geometric 0-simplex is simply a point, a geometric
1-simplex is a line between two points, a geometric 2-simplex is a triangle and a geometric
3-simplex is a tetrahedron, as depicted in Figure 2.1, though not necessarily as regular
as these examples. Note that every point of the convex hull of given points is uniquely
determined by its BARYCENTRIC

COORDINATESbarycentric coordinates (t0, t1, . . . , tn) if we fix an order of the points.

We can define all the relations and properties we just assigned to abstract simplices in
the same way for geometric simplices, in particular the face of a geometric n-simplex
that is spanned by {x0, x1, . . . , xn} is the convex hull of any subset of {x0, x1, . . . , xn}.

A collection of geometric simplices K is called a GEOMETRIC
SIMPLICIAL
COMPLEX

geometric simplicial complex if it satisfies
two conditions:

(1) Every face of a geometric n-simplex σ ∈ K is contained in K as well, and
(2) the intersection σ ∩ τ of any two geometric simplices σ, τ ∈ K is a face of both of

them (and thus contained in K by (1)).

Together these conditions are analogous to condition (1) of abstract simplicial complexes
above. The union of all vertices of simplices in the complex is called ground set again
and denoted by V(K).

Just as we were able to exchange the ground set before, all that really matters to us know
is the topology of K, or more precisely, of the union of all simplices of K, which we will
call |K|:

|K| :=
⋃

σ∈K
σ

When we have two geometric simplicial complexes K andH with a homeomorphism
ϕ : |K| → |H|, i.e. a map that is bijective, continuous and whose inverse is continuous
as well, then we call K and H isomorphic and write K ∼= H if the restriction of ϕ to a
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2 Prerequisites

simplex of K is a simplex inH again. Because ϕ is bijective, this applies to its inverse as
well.

We can easily construct an abstract simplicial complex C(K) from a geometric one K, by
setting the ground set V(A) to be the union of the vertices of all simplices σ ∈ K and
letting C(K) contain a subset {x0, x1, . . . , xn} if and only if its convex hull is a simplex of
K.

The inverse conversion is possible as well: Given an abstract simplicial complex A with
d := |V(A)| < ∞, we can define a geometric simplicial complex K = G(A) using the

STANDARD
n-SIMPLEX standard n-simplex ∆n that is spanned by the standard basis vectors {e1, e2, . . . , en+1} of

Rn+1. All we have to do is construct ∆d−1, which is conveniently spanned by d points,
and define an injective (and by cardinality even bijective) map p : V(A)→ {e1, e2, . . . , ed}.
Then K is the subcomplex of ∆d−1 that contains a k-face σk ∈ ∆d−1 spanned by the ver-
tices {x0, x1, . . . , xk} ⊆ V(∆d−1) if and only if p−1({x0, x1, . . . , xk}) ∈ A. Up to changing
the ordering of basis vectors, this construction is unique. This ends up in the very high-
dimensional space Rd, and while lower dimensions would be possible, they require
more effort. However, an abstract simplicial complex of dimension d has no equivalent
geometric complex in Rn if n 6 d, because there are no geometric d-simplices in Rn.

Combining these two constructions, we can exchange abstract and geometric simplicial
complexes for each other, as we can build one from the other and vice versa. The
following theorem gives the justification for this exchange:

Theorem 2.1. Given an abstract simplicial complex A and a geometric simplicial complex K,
then

(1) if K = G(A), then C(K) ∼= A;
(2) if A = C(K), then G(A) ∼= K.

Proof. (1) Because V(C(K)) is the union of all vertices of simplices of K, which are
all faces of ∆d−1 if dim(A) = d, we have V(C(K)) = {e1, e2, . . . , ed}. Thus the
bijection p chosen during the construction is actually a vertex map between A and
C(K). It remains to show that p and p−1 are simplicial maps in order for A and
C(K) to be isomorphic, which is trivial:
A subset σ ⊆ V(C(K)) = {e0, e1, . . . , ed} is a simplex of C(K) if and only if Conv(σ)
is a simplex of K, which in our case is exactly the case when p−1(σ) ∈ A.

(2) If we do one more step and construct C(G(A)), we know from (1) that it is isomor-
phic to A. Applying Lemma 2.2 on the next page, we are done.
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2.1 Combinatorial Topology

Lemma 2.2. Given two abstract simplicial complexes A and B along with two geometric
simplicial complexes K and G such that A = C(K) and B = C(G). Then every simplicial
map ϕ : V(A)→ V(B) induces a continuous map f : |K| → |G| that maps simplices of K to
simplices of G.

Proof. Remember from the definition of geometric simplices that every point x of an
n-simplex σ with the vertices {x0, x1, . . . , xn} can be represented using barycentric coor-
dinates as

x =
n

∑
i=0

tixi with
n

∑
i=0

ti = 1.

We use this notation to define the map f simplex-wise by setting

f (x) :=
n

∑
i=0

ti ϕ(xi) for x ∈ Conv(σ).

On a simplex-basis, this is obviously continuous, as the ϕ(xi) stay fixed and only the
barycentric coordinates ti change, which they do in a continuous manner. It also fits
nicely together on simplex boundaries, because the (scaled) barycentric coordinates of
the larger simplex have to match with the barycentric coordinates of its face.

We will work with abstract simplicial complexes whenever possible, because their
structure is much easier to handle, but visualize them using their geometric version.
Also, sometimes it will not be possible to avoid using their geometric counterparts.

Note that the standard geometric n-simplex ∆n, which we only introduced as a tool for
one of the constructions above, is useful in many ways. For example, using barycentric
coordinates again, one can see that there is one unique affine map from ∆n to every
geometric n-simplex σn, called its CHARACTERISTIC

MAPcharacteristic map, if we fix the ordering of the vertices
of both simplices. This will be useful in order to not have to consider every possible
geometric simplex, but only the standard simplices.

2.1.2 Maps, colors and labels

An important tool for modeling distributed computing are the so called CARRIER MAPcarrier maps.
Given two abstract simplicial complexes A and B, a carrier map Φ : A → 2B maps each
simplex of A to a subcomplex of B monotonically, i.e. Φ(τ) ⊆ Φ(σ) ⊆ B if τ ⊆ σ ∈ A.
Just like simplicial maps, carrier maps can be RIGIDrigid, namely when the image of a d-simplex

7



2 Prerequisites

is a pure subcomplex of dimension d. Furthermore, they can also beSTRICT strict if for two
simplices σ, τ ∈ A we have Φ(σ ∩ τ) = Φ(σ) ∩Φ(τ).

Note that because σ ∩ τ ⊆ σ and σ ∩ τ ⊆ τ, monotonicity of Φ already gives us
Φ(σ ∩ τ) ⊆ Φ(σ) and Φ(σ ∩ τ) ⊆ Φ(τ) and thus half of the equation defining a
strict carrier map, namely the subset-part. Hence, we could define strict carrier maps
equivalently by only requiring the superset-part Φ(σ ∩ τ) ⊇ Φ(σ) ∩Φ(τ).

Given a carrier map Φ : A → 2B , not every simplex τ ∈ ⋃Φ(A) is directly an image of a
simplex ofA, but it is always contained in a subcomplex Φ(σ) for some σ ∈ A. If Φ is not
strict, there might be different σ, σ′ ∈ A of minimal dimension with τ ∈ Φ(σ) ∩Φ(σ′),
but if it is strict, Φ(σ) ∩ Φ(σ′) = Φ(σ ∩ σ′), so σ ∩ σ′ would be a simplex of smaller
dimension whose image still contained τ. Thus, if Φ is strict, there is a unique σ ∈ A
of minimal dimension such that τ ∈ Φ(σ). We call this σ theCARRIER carrier of τ (under Φ) and
denote it by Car(τ, Φ) — or Car(τ) if no confusion over Φ can arise.

Obviously, we can compose two carrier maps Φ : A → 2B and Ψ : B → 2C by setting

(Ψ ◦Φ)(σ) := Ψ(Φ(σ)) :=
⋃

τ∈Φ(σ)

Ψ(τ). (2.1)

Given a simplicial map ψ : B → C, the construction looks exactly the same, just replace
Ψ with ψ. The other way round, if ϕ : A → B, it is even simpler, because we need no
unions whatsoever: (Ψ ◦ ϕ)(σ) := Ψ(ϕ(σ)).

Proposition 2.3. Let A, B, C be abstract simplicial complexes, Φ : A → 2B and Ψ : B → 2C

carrier maps and ϕ : A → B and ψ : B → C simplicial maps.

(1) If Φ and Ψ are strict, so is Ψ ◦Φ.
(2) If f ∈ {Φ, ϕ} and g ∈ {Ψ, ψ} are rigid, so is g ◦ f .

Proof. (1) Proving the strictness of Ψ ◦ Φ is a matter of simply writing out the set
operations involved, and we will skip it for brevity. It can be found for example in
[HKR13, Prop. 3.4.6].

(2) We will first handle the most difficult case and let f = Φ and g = Ψ both be
rigid carrier maps. Since Φ is rigid, Φ(σ) is a pure d-dimensional complex if σ

is a d-simplex of A. And as Ψ is monotonic, it suffices to take the union over all
d-simplices of Φ(σ) instead of all its simplices in Equation (2.1). But because Ψ is

8



2.1 Combinatorial Topology

rigid as well, the image of every d-simplex is a pure d-dimensional complex again,
and so is the union of all these d-dimensional complexes, because no new facets
appear by taking the union of subcomplexes.
Next, let f = Φ be a rigid carrier map and g = ψ a rigid simplicial map. Φ maps
a d-simplex to a pure d-dimensional complex, and ψ takes every simplex of that
complex to a simplex of the same dimension, preserving faces because it operates
on the vertex level. Thus the image of ψ ◦Φ is a pure d-dimensional complex itself.
More obviously, if f = ϕ is a rigid simplicial map and g = Ψ is a rigid carrier map,
we do not need to take the union but simply compose the two maps. The image
ϕ(σ) has the same dimension as σ itself, and is mapped by Ψ to a pure complex of
that dimension, so Ψ ◦ φ is rigid.
Finally, ψ ◦ ϕ is of course rigid because the dimension of every simplex is preserved
by both ψ and ϕ.

When we have a simplicial map ϕ : A → B and a carrier map Φ : A → 2B , we want
to have some means of talking about their compatibility, and in fact there is only one
sensible way to do that: ϕ is said to be CARRIED BYcarried by Φ if ϕ(σ) ∈ Φ(σ) holds for every
simplex σ ∈ A. In the same vein, another carrier map Ψ : A → 2B can also be carried by
Φ if it fulfills Ψ(σ) ⊆ Φ(σ) for every simplex σ ∈ A. In both cases, we write ϕ ⊆ Φ and
Ψ ⊆ Φ, respectively.

In a slightly different setup, if we are given three simplicial complexes A, B and C with
carrier maps ΦA : C → A and ΦB : C → B and a simplicial map φ : A → B, we say that
φ is CARRIER-

PRESERVINGcarrier-preserving if Car(φ(σ), ΦB) ⊆ Car(σ, ΦA) for every simplex σ ∈ A.

One more important concept is how we associate data to the vertices, as we have seen
that the ground set is not suitable for this task because it can be exchanged and shuffled
at any time. Given an abstract simplicial complex A and a set C of available values, a
map χ : V(A)→ C that assigns each vertex a value is called a LABELINGlabeling, and A is labeled
with C by χ. If for every simplex σ ∈ A we have that χ|σ is injective, meaning that
no two vertices of a simplex have the same label, it is called a COLORINGcoloring, and A may be
colored with C. If |C| = dimA, we call χ minimal. Especially in the context of distributed
computing the colors might be called names as well. Of course, a single complex can
have more than one labeling or coloring to attach more than one kind of data to the
vertices.

9



2 Prerequisites

If a vertex map ϕ : A → B between two complexes that are both colored with C (by χA

and χB respectively) preserves these colors, i.e. χ(ϕ(σ)) = χ(σ) for every simplex σ,
we call ϕCHROMATIC (χ-)chromatic, color-preserving or name-preserving. Something similar applies to
carrier maps: If Φ : A → 2B is a carrier map such that Φ(σ) is colored with χA(σ) by χB

for every simplex σ ∈ A, then Φ is called chromatic. This is mainly interesting for rigid
carrier maps, though.

A simplex σ of a simplicial complex A labeled with χ is calledMONO-
CHROMATIC (χ-)monochromatic or

c-monochromatic if χ(σ) = {c}. This counter-intuitive term—“chromatic” hinting at a
coloring, whereas in our definition of a coloring no simplex can be monochromatic—
stems from the fact that in literature, the term “coloring” is also used for what we call a
labeling. What we call a coloring is then called a “proper coloring”. However, we feel
that less confusion arises if there are two strictly different terms used.

2.1.3 Subdivisions

The most important way of modifying simplicial complexes areSUBDIVISIONS subdivisions. They are
best defined using the geometric view of things: Given geometric simplicial complexesK
andH that live in the same ambient space Rd, we callH a subdivision of K if |K| = |H|
and each simplex of K is the union of finitely many simplices of H. We can even
restrict this to the union of finitely many simplices of the same dimension, because
obviously higher dimensions would yield a larger union, while lower dimensions are
already contained as faces. Intuitively, this means that we “cut” some (not necessarily
all) simplices into finitely many new ones, but they still occupy the same space. Two
very basic examples are depicted in Figure 2.2 on page 13.

Thanks to our earlier constructions, we can also apply this definition to abstract simplicial
complexes without having to know exactly what the conditions in that realm are: If for
two abstract simplicial complexes A and B we have that A ∼= C(K) and B ∼= C(H), and
H is a subdivision of K, then we call B a subdivision of A as well.

Note that every subdivisionH of K induces a rigid and strict carrier map Ψ : K → 2H

that maps a simplex of K to all the simplices it has been subdivided into:

Ψ(σ) := {τ ∈ H | τ ⊆ σ}.

That Ψ is rigid and strict directly follows from the fact that each simplex σ ∈ K is the
union of finitely many simplices ofH, thus |σ| = |Ψ(σ)|.

10
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This carrier map enables us to simply call a subdivision CHROMATIC
SUBDIVISIONchromatic, if its induced car-

rier map is chromatic. Also, we now can speak about the carrier of a simplex in the
subdivision.

A more systematic approach than dividing only some simplices would not distinguish
between different n-simplices, but only care about the dimension n. This is what we call
a BOUNDARY-

CONSISTENT
SUBDIVISION

boundary-consistent subdivision: For every dimension n ∈ N, let Sn be a subdivision
of the standard geometric n-simplex ∆n. These subdivisions have to be compatible:
For m < n, let σm be a face of ∆n, and let ϕ : ∆m → σ be its characteristic map, where
we use the ordering of the standard basis for both simplices. Then the restriction of
the subdivision Sn to σm has to agree with ϕ(Sm). This is what “boundary-consistent”
should intuitively mean: If we know how to subdivide a low- and a high-dimensional
simplex, the boundary of the high-dimensional simplex should be subdivided according
to how we subdivide lower dimensions.

Using such a boundary-consistent subdivision, we can define a SUBDIVISION
OPERATORsubdivision operator S

that subdivides every simplex σ of a geometric simplicial complex with fixed vertex
ordering according to the characteristic map ϕ of σ, namely it replaces σ by ϕ(Sdim(σ)).
From our examples in Figure 2.2 on page 13, both could be caused by a subdivision
operator. However, we will see from their precise construction that only the standard
chromatic subdivision in Figure 2.2(b) is a subdivision operator.

We will use a specific method to combine existing simplicial complexes into new ones
and thereby create a subdivision: The JOINjoin of two disjoint abstract simplices σ and τ,
denoted σ ∗ τ, is their union σ ∪ τ. Equivalently, the join of two geometric simplices
with affinely independent vertices {v0, v1, . . . , vn} and {w0, w1, . . . , wm} is the convex
hull of the union of vertices. Similarly, the join of two simplicial complexes A and B is
the complex of all possible joins of simplices: A ∗ B := {σ ∗ τ | σ ∈ A, τ ∈ B}.

As a special case, given an m-simplex σ, minimally colored with C by χσ, a chromatic
subdivision Ψ(∂ σ) of its boundary, and another m-simplex τ also minimally colored
with C by χτ, the CONEcone over Ψ(∂ σ) for τ, denoted τ ~ Ψ(∂ σ), is the simplicial complex
defined as

⋃
{τ′ ∗Ψ(σ′) | σ′ ∈ ∂(σ), τ′ ⊆ τ and χτ(τ

′) ∩ χσ(σ
′) = ∅}.

11
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If we cone geometrically, we would assume τ as a scaled-down copy of σ with the same
barycenter but mirrored point-wise at this barycenter. More precisely, given the vertices
v0, v1, . . . , vm of σ, we place the vertices w0, w1, . . . , wm of τ at

wi =
m

∑
k=0

tkvk with tk =

 m
2m(m+1) if k = i,

2m+1
2m(m+1) else.

One can easily check that the coefficients tk sum up to 1, making the wi lie inside the
simplex σ, and that ti is always lower than the other coefficients that are all equal,
positioning wi on the line from vi through the barycenter, but on the far end as seen from
vi.

Proposition 2.4. If σ is the minimal-colored simplicial complex containing a single simplex
along with its faces, and Ψ(∂ σ) is a chromatic subdivision of ∂ σ, then Ψ(σ) := τ ~ Ψ(∂ σ) is a
chromatic subdivision of σ.

The proof of this general statement is very technical and we refer to [CR10, the Appendix,
p. 299 ff.] for its full presentation. While they used so called “divided images” instead of
subdivisions, their method proof also works for subdivisions. It mainly involves two
steps: First that τ ~ ∂ σ is a subdivision of σ and second that τ ~ Ψ(∂ σ) is a subdivision
of τ ~ ∂ σ and thus also of σ.

Here are two examples of cones that we will actually use extensively later on: Given
an n-simplex σ we define theBASIC

CHROMATIC
SUBDIVISION

basic chromatic subdivision β(σ) of σ as the cone over ∂(σ)

(i.e. with Ψ being the identity) for another n-simplex τ (Figure 2.2(a) on the next page).
Note that this is no subdivision operator: We only subdivide the highest-dimensional
simplex, not its boundary. If we did subdivide all faces, starting with the lowest dimen-
sional, using cones, we would end up with theSTANDARD

CHROMATIC
SUBDIVISION

standard chromatic subdivision (Figure 2.2(b)
on the facing page), denoted χ(σ). Note that for these two special cones, the proof that
they actually are subdivisions can be simplified greatly by using Schlegel diagrams, as
was done in [Koz12].

Proposition 2.5. Let β(σ) be the basic chromatic subdivision of an n-simplex σ colored with Π
by c. Then there is a bijection

f : {σn ∈ β(σ) |dim(σn) = n} ←→ [1]Π − {0}Π.

Proof. The simplices (and in particular all n-simplices) of β(σ) by definition all have the
form τ′ ∗ σ′ with τ′ ⊆ τ and σ′ ∈ ∂(σ), the two having no common colors. Because an

12
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(a) Basic chromatic subdivision (b) Standard chromatic subdivision

Figure 2.2: Two chromatic subdivisions of a 2-simplex colored with green, red and blue.

n-simplex has n + 1 vertices, every color is present exactly once, either in τ′ or in σ′. We
then simply set

f (σ)i :=

1 if i ∈ c(τ′),

0 if i ∈ c(σ′).
for every n-simplex σ and every i ∈ Π

We already saw that this is injective, but it is also surjective by definition: β(σ) is the
union of the joins of all possible combinations of τ′ and σ′, allowing for σ′ to be empty
and τ′ = τ, which would result in an all-1 tuple. Only the all-0 tuple must be excluded,
because we choose σ′ ∈ ∂(σ), which excludes σ itself.

In the subdivision Ψ(σ) of a single n-simplex σ, we will call τ ∈ Ψ(σ) an n-CORNERn-corner if, for
every dimension 1 6 i 6 n, there is an i-face τi of τ such that Car(τi, Ψ) is an i-face of σ

and they build an increasing chain τ0 ⊆ τ1 ⊆ · · · ⊆ τn = τ. This seemingly artificial
construction has the advantage that all n-corners of a chromatic subdivision have the
same orientation [CR08, Lem. 2.4] and can be used to trace orientation through multiple
iterations of coning, as we will do later in Chapter 3.

2.1.4 Pseudomanifolds and orientation

A pure simplicial complex of dimension n, no matter if abstract or geometric, is called
an PSEUDO-

MANIFOLDn-dimensional pseudomanifold if every of its (n − 1)-simplices has exactly two co-
faces, and if every two n-simplices σ and σ′ can be connected by a series of n-simplices
σ = σ1, σ2, . . . , σm = σ′ such that σi ∩σi+1 is an (n− 1)-simplex for all i ∈ {1, 2, . . . , m− 1}.
Such a series is called a SIMPLEX PATHsimplex path from σ to σ′.

13
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Remember that in a pure simplicial complex, every simplex with codimension one has
at least one co-face, and that those with exactly one were called the boundary. As they
now have exactly two, a pseudomanifold has an empty boundary. We can loosen this
restriction by only requiring that every (n− 1)-simplex has at most two co-faces, and
then call the complex a pseudomanifold with boundary.

Pseudomanifolds can have the interesting property of being orientable. To understand
this concept, we first need a notion of an orientation on a simplex: Two orderings on the
vertices of an n-simplex can differ by an even or by an odd permutation of the vertices,
thus splitting all possible orderings in two equivalence classes. If (v0, v1, . . . , vn) is an
ordering of the vertices, we write the corresponding equivalence class as [v0, v1, . . . , vn]

and the other one as −[v0, v1, . . . , vn]. These two classes are the possibleORIENTATION orientations of
the simplex.

We want an orientation of an n-simplex σ to induce an orientation on all of its (n− 1)-
faces. If the orientation of σ is [v0, v1, . . . , vn], we therefore define the induced orientation
of the (n− 1)-face σn−1

i = {v0, v1, . . . , vn} − vi to be (−1)i[v0, . . . , v̂i, . . . , vn], where v̂i

means omission of vi. In other words, we choose the naturally induced ordering to
determine the equivalence class if i is even, and choose the opposite one if i is odd. Note
that another representation of σ’s orientation either preserves the parity of i or changes
both, the parity of i and the equivalence class [v0, . . . , v̂i, . . . , vn].

When the orientations assigned to two n-simplices intersecting in an (n− 1)-face induce
opposite orientations in this face, they are called coherently oriented, and if it is possi-
ble to assign an orientation to every n-simplex of a pseudomanifold such that every
neighboring pair is coherently oriented, the pseudomanifold is calledCOHERENTLY

ORIENTABLE coherently orientable
or—together with the orientation—coherently oriented. Note that this is only possible
because in a pseudomanifold, every (n− 1)-simplex has exactly two cofaces. If we were
dealing with the simplex of a general complex and it had more cofaces, at least one
orientation would necessarily be induced by more than one of them, simply because we
only have two orientations at hand.

However, because we mostly are dealing with chromatic pseudomanifolds, we can use
a much simpler version of orientability:

Lemma 2.6. Let the n-dimensional pseudomanifold A be minimally colored. Then A is ori-
entable if and only if there is a map

ε : {σn ∈ A |dim σ = n} → {−1,+1}

14
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assigning either −1 or +1 to every n-simplex in a way that no two neighboring n-simplices are
assigned the same value.

Proof. Without loss of generality, we assume the colors to be [n]. By considering not
orderings of the vertices themselves but orderings of their colors, we simply call the
orientation [0, 1, . . . , n] “+1” and its opposite “−1”. Now by the minimality of the cover,
the common face σn−1

i = τn−1
j of two neighboring n-simplices σ and τ is missing vertices

of the same color in both, so actually i = j. Thus, the induced orientations of the face
differs if and only if the coloring orientations of σ and τ differ.

It is well known that the subdivision H of an orientable pseudomanifold K is still an
orientable pseudomanifold. While the pseudomanifold-property follows almost directly
from |K| = |H|, it is more difficult to see and that the orientability of a pseudomanifoldK
actually only depends on the underlying topological space |K| as well. In fact, such
combinatorial invariants are what combinatorial topology is all about. But as this is the
result of the more involved theory of homology, its proof would go beyond the scope
of this thesis and we will skip it. We instead refer to [Koz08] and [Mun84] for a more
detailed discussion of these matters.

Instead, to conclude this chapter on the basics of combinatorial topology that we require,
we note a special property of the basic chromatic subdivision:

Lemma 2.7. Given an oriented n-simplex σ with an arbitrary binary labeling B, first coning
its boundary with another n-simplex τ and then coning the boundary of τ with yet another
n-simplex γ yields a complex in which we can label γ with 0, ∂(τ) with 1 and get exactly one
0-monochromatic n-simplex (namely γ) that has the same orientation as σ without modifying
the boundary of σ.

Proof. If we ignore the labeling, these are just two basic chromatic subdivisions executed
consecutively. That way it is obvious that ∂ σ stays untouched. Furthermore, even if the
inner simplex of the first basic chromatic subdivision (the one that corresponds to the
tuple (1, . . . , 1) in Proposition 2.5 on page 12, in this case τ) had another orientation than
the simplex that was subdivided (σ in this case), doing the subdivision a second time
on this simplex would reverse the orientation again, making sure that γ has the same
orientation σ had.
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Figure 2.3: After two appropriate basic chromatic subdivisions, there is an isolated
0-monochromatic n-simplex in the middle, indicated using white for 0-
vertices and black for 1-vertices.

It remains to show that there are no 0-monochromatic simplices other than γ. We
know that every simplex of a basic chromatic subdivision contains at least one vertex
from the simplex the cone was taken with. Thus, every simplex in β(σ) \ τ cannot be
0-monochromatic, because it contains a vertex of τ which is 1-monochromatic.

Also, except the innermost, every simplex in a basic chromatic subdivision contains at
least on vertex from the original outer simplex. Applying this to the second subdivision
yields that every simplex in β(τ) \ γ is not 0-monochromatic, again, because τ is 1-mono-
chromatic.

An example of this construction in dimension two can be seen in Figure 2.3. Note
that while the construction may yield 1-monochromatic simplices, we will always
cone the example with a 0-monochromatic simplex, making the 1-monochromatic ones
disappear.
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2.2 Distributed Computing

2.2 Distributed Computing

Now we need to apply the framework of combinatorial topology to the problems of
distributed computing. We limit ourselves to the parts relevant to our goal of analyzing
the weak symmetry breaking. A good introduction to the whole theory, covering other
types of problems as well, can be found in [HKR13].

2.2.1 Model

To establish some basic terminology: In a distributed computing system, there are
n + 1 > 1 processes {p0, p1, . . . , pn} that execute a protocol in order to solve a task by
communicating. Each process pi is said to have the (process) ID or name i and may or may
not be assigned an additional input value vi ∈ Vin. After finishing the protocol, each
process pi (that did not crash) returns an output value oi ∈ Vout.

The “processes” can be thought of as computers communicating via a network, pro-
cessor cores of a single computer communicating via shared memory, or even humans
communicating by writing letters. While we will detail the meaning of protocol and task
later on, we will start with the assumptions made concerning the environment we are in:
What constraints and freedoms apply to the processes, communication and protocol?

There are several models for distributed computing, each considering different situations.
We will assume a model that has the following properties:

Asynchronous The processes of the system act asynchronously, meaning that not all
processes do a computation step at the same time, but as fast as they can or want. Because
we do not care about actual speeds, this property is characterized by the varying relative
speeds of the processes: While one process may still be executing the first step of the
protocol, another one might already be finished. Furthermore, the relative speeds can
change during the execution of the protocol.

Wait-Free No process is allowed to wait for another process to finish with some part
of the protocol. This includes passive waiting (doing nothing until a message arrives) as
well as active waiting (looping through the same actions until the situation changes).
Note that due to the asynchronicity, it is equivalent to assume that up to n− 1 processes
may silently crash, i.e. they stop doing anything and fall silent eternally, at any time
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during the execution, because a very slow process cannot be distinguished from a
crashed process if no other process is allowed to wait until it sends a message.

Rank-Symmetric As our model is wait-free, it is possible that any proper subset of
processes fails. Consider an execution where only processes pi with i ∈ I1 ⊆ [n]
participate (i.e. all others have crashed). Given another subset I2 ⊆ [n] with |I1| = |I2|,
let r : I1 → I2 be an order-preserving bijection. We then require that oi = or(i) for all
i ∈ I1. This property prevents trivial decisions based solely on the process’ own ID: By
the wait-free property, no process can be sure to know all participating processes, which
makes it impossible to anticipate if, for example, the own process ID is the lowest.

2.2.2 Tasks

To analyze the computability of a problem or, as we will call it from now on, aTASK task, we
need to formalize what we even mean by that term. First of all, we need to model the
initial situation: Which combinations of input values, if any, are allowed to start the task.
This is where our simplicial complex comes in handy: Given the set Π = {p0, p1, . . . , pn}
of processes and a set Vin of values that a single process can start with, a pure, n-
dimensional simplicial complex I on the ground set S ⊆ Π × Vin is called anINPUT COMPLEX input
complex if it is colored with Π and labeled with Vin by the respective projections prΠ and
prVin . The processes pi1 , pi2 , . . . , pim are allowed to start the task with the input values
vi1 , vi2 , . . . , vim if and only if there is a simplex {(pi1 , vi1), (pi2 , vi2), . . . , (pim , vim)} ∈ I . We
call this simplex aCONFIGURATION configuration.

Modeling the initial situation as a simplicial complex makes sense, because the subset of
a configuration is a configuration again, it just does not assign a value to every process.
This situation is the same as when all processes have values assigned, but some of them
crash before starting, thus the input values of the others do not matter for the result of
the few finishing first. Furthermore, every possible combination of assignments to some
processes has to be expandable to an assignment to all processes, thusA has to be a pure
complex of dimension n.
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(a) No further restrictions.

0
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(b) No three processes can have the same value.

Figure 2.4: Two possible input (or output) complexes for three processes each having
a boolean value. Each vertex represents the assignment of one value to one
process, where the value is denoted by the label and the process which it is
assigned to by the color. Possible combinations of assignments are indicated
by lines and gray triangles.

Let us have an example for this. If a task that is to be solved by three processes,
Π = {p0, p1, p2}, requiring each of them to have a boolean input value, Vin = [1], and
imposing no further restrictions, we have S = {p1, p2, p3} × [1] and

A =
{

A ⊆ S
∣∣∣ |prΠ A| = |A|

}
.

However, if the task requires that not all three processes have the same input value,
S would stay the same but A would shrink to{

A ⊆ S
∣∣∣ |prΠ A| = |A| ∧ |prVin A| > 1

}
.

Both complexes are visualized in Figure 2.4.

Similarly, we can construct an OUTPUT
COMPLEXoutput complex O to define what combinations of output

values are admissible, which again is pure n-dimensional, colored by Π but this time
labeled by Vout. Both of our examples for input complexes could be output complexes as
well, and in fact, the second one is exactly the output complex for the Weak Symmetry
Breaking task for three processes, as we will see in Chapter 3.

Given some input configuration for each of the participating processes, the task specifies
what each process may output after some computation and communication. This is
encoded in a name-preserving (i.e. prΠ-chromatic) carrier map ∆ : I → 2O . Note that by
using a carrier instead of a simplicial map, tasks that allow more than one output value
for a given input value can be formulated.
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2.2.3 Protocols

Now that we know how to describe the task we are supposed to solve, how do we
model the process of its solution? An important insight is that the communication and
the computation can theoretically be separated completely thanks to our requirement
of wait-freeness: If the processes simply communicate everything they know, either
from earlier communications or from their input values, then every process can compute
the state and decisions of all other processes that already completed the protocol after
completing the communication phase itself. We will exclusively use such full information
protocols.

The communication between processes is based on n + 1 so called registers {m0, . . . , mn}
that store arbitrary values, one for each process. Each process pi can write only to its own
register mi, replacing its previous contents, but read all registers at once. All registers
are initialized with the special value ⊥, that cannot be written by any process. Thus, a
register contains ⊥ if and only if it has not been written to yet by its associated process,
meaning that this process has not yet reached a point in the protocol where it would
write to the register.

The communication happens in rounds orLAYERS layers, as we will call them. Each layer has
its own set of registers, and in each layer, some processes simultaneously write to their
according registers of this round and read a snapshot of all of this round’s registers
immediately after. Since we only consider full information protocols, no computation
happens between the rounds, thus each process writes its input value vi in its first round.
Later, in its i-th round, it writes the snapshot it read in its (i− 1)-th round. Finally, after
taking part in a predetermined number of rounds K, each process pi decides on an output
value oi. This is called theIS MODEL (layered) Immediate Snapshot (IS) model.

The IS model is not very realistic, as we forbid a process to inspect the value of registers
corresponding to earlier rounds, which is hardly justifiable in real-world applications. It
is, however, equivalent to more realistic models in terms of task solvability, as is proven
in [HKR13, Chap. 14], thus its usage does not make the results any less useful.

To formalize this model in terms of combinatorial topology, we want to define a subdi-
vision operator of the input complex whose application corresponds to one round of
communication. Modeling a layer as a subdivision makes sense, because depending on
the order in which the processes execute their rounds, different configurations of the
system are possible, more than there were at the beginning, and thus more simplices
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should be present. Using not just a subdivision but a subdivision operator is necessary,
because a process only knows about those other processes Π′ ⊆ Π that executed their
rounds earlier or in parallel, not about the ones that follow. Thus the subdivision of
the subcomplex consisting only of simplices labeled with Π′ must be the same as the
restriction of the subdivision of the whole input complex to those simplices labeled only
with Π′—which is exactly what the usage of a subdivision operator guarantees.

We will start with a simple case: Imagine an input complex I = σn consisting of only one
n-simplex, and set K = 1. If every process pi only executes one round and has only one
possible input value vi, all that matters is in which order they execute their round. We
will not do a full formal construction and proof it. Rather, we refer to [Koz12] and will
illustrate some key examples of execution orders for three processes {red, green, blue}
using Figure 2.5(a) as a possible protocol complex to illustrate that it probably is the
right choice. The execution can be imagined as the processes “moving around” on the
vertices of their color, starting at the corner vertices.

First, consider the execution order where red, blue and green consecutively execute their
rounds. Red does not know about any other process, thus it has to stay on its corner
vertex by the property of the subdivision operator. Then blue executes and can choose
any blue vertex on the line between the red and blue corner vertex. At the same time,
it has to choose a blue vertex of a simplex that contains the red corner vertex, because

a

b

c

(a) (b)

Figure 2.5: The protocol complex P for three processes, indicated by different colors,
after (a) one or (b) two rounds of immediate snapshots. Some simplices of (a)
are labeled for reference. The edges of (a) inside (b) are drawn thicker to
highlight that (b) is indeed a subdivision of (a).
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red already decided on this one and the simplices represent the possible configurations.
Thus choosing its own blue corner vertex would not be possible and it has to choose the
blue vertex of the upper left simplex labeled with a in the figure. Finally, it is green’s turn,
and though green is free to choose any simplex in the whole complex because it executes
last and knows that all processes participate, it is bound to choose the green vertex of
a because this is the only vertex contained in a simplex together with the red and blue
vertices that were already fixed. In total, a models exactly this order of executions. Note
that green cannot distinguish this execution order from one where first blue and then
red executed. Luckily, the green vertex of a covers both cases, and in fact, all co-faces of
a vertex represent configurations that are indistinguishable to that vertex’s process.

Another example: What if blue executes first, and red and green follow simultaneously?
Red and green cannot distinguish this situation from a fully sequential execution like
we just had it. So red would choose the same vertex that it would choose if green had
run before, and vice versa. We end up with the vertices of the simplex b.

Finally, if all three processes executed the round simultaneously, the same argument
applies: They cannot distinguish this situation from a fully sequential run where the
two others, thus they choose the vertices of the simplex c.

All in all, Figure 2.5(a) on page 21 seems to fit the requirements for the protocol complex
for K = 1, n = 2 and I = σn. We see that it is the standard chromatic subdivision of I ,
and could argue for every other dimension in exactly the same way.

If K > 1, every following round starts at a simplex of the protocol complex of the
previous round and subdivides it in exactly the same way. This is because it does
not matter if the first process that executes the second round does so before the last
one executes the first round, or vice versa, as the different rounds have different sets
of registers. The same holds true for larger input complexes, because which specific
input values we started with does not matter, assignments and values from outside
this simplex will not simply appear during the execution. As such, the complex in
Figure 2.5(b) on page 21 can be considered as the protocol complex of both, an input
complex I = σ2 with K = 2 or an input complex I = χ(σ2) with K = 1. Thus the
protocol complex after each processes executed K rounds of IS is the K-th standard
chromatic subdivision of I , so we have the protocol complex P = χK(I).

Along with the protocol complex, we have the protocol carrier map Θ = χK that
gives us all possible configurations after an execution of the protocol for a given input
configuration. Θ is strict (Θ(σ) ∩Θ(σ′) = Θ(σ ∩ σ′)), because the executions/simplices
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that are contained in both Θ(σ) and Θ(σ′) are those where all processes of σ ∩ σ′ ran
without knowledge of the other processes and thus could not distinguish between the
input configurations σ and σ′ or even only σ ∩ σ′.

The final decision of an output value is modeled by the DECISION MAPdecision map, a chromatic simpli-
cial map δ : P → O. Obviously, such a map does not always exist, otherwise we would
not need to bother about solvability of tasks. To be exact, a protocol Θ : I → P solves
a task ∆ : I → O if there is a decision map δ such that δ ◦Θ is carried by ∆. Roughly
speaking, a task is solved by a protocol if at the end of every possible protocol execution,
every process can choose an output such that the configuration of output values is
allowed by the task for the input values supplied.

Note that this model is as good as (almost) any other, as proven [BG93]. For other models,
the protocol complex P and protocol map Θ could look different, but wouldn’t yield
other solvability results.

2.2.4 Computability

This combinatorial setup enables us to characterize, when a protocol exists for a task.
This was originally done by [HS99] in a very handy theorem:

Theorem 2.8 (Anonymous computability theorem [HS99, Thm. 6.3]). A symmetric decision
task (I ,O, ∆) has a wait-free anonymous protocol using read-write memory if and only if there
exists an integer K and a color-preserving simplicial map

δ : χK(I)→ O

symmetric under permutation, such that δ is carried by ∆ ◦Car(∗, χK).

Here χK is the K-th standard chromatic subdivision. In the same paper, we get another
helpful property, that enables us to do other chromatic subdivisions as well, because
they are “contained” in the standard chromatic subdivision if we only apply it often
enough:

Theorem 2.9 ([HS99, Thm. 5.29]). If B is a chromatic subdivision of a complex A, then there
exists K > 0 and a chromatic and carrier-preserving simplicial map χK(A)→ B.
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Note that while back then they proved the theorem for anonymous protocols, which must
not depend on the process ID at all, it easily transferred to rank-symmetric protocols as
well by requiring that δ is not symmetric, but rank-symmetric, i.e. symmetric on the faces
of I under rank-preserving permutations of subsets of I . The equivalence comes from
the fact that instead of restricting the use of the process ID to comparisons, one could
also understand them as inputs from an infinite set, making I contain infinitely many
copies of more or less the same input complex with different process ID assignments.
If you know how to subdivide a single input subcomplex rank-symmetrically, you can
subdivide the whole infinite input complex.

Considering this small change, we can combine these two theorems to the following by
additionally using the equivalences of the IS with the read-write memory model along
with our accustomed notation:

Corollary 2.10. A rank-symmetric decision task (I ,O, ∆) has a wait-free rank-symmetric
protocol using IS if there exists a chromatic subdivision P := Ψ(I) of I and a decision map
δ : P → O such that δ ◦Ψ is carried by ∆.
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3 Weak Symmetry Breaking

We will now consider the application of the theory from Chapter 2 to find a protocol that
solves the task of Weak Symmetry Breaking (WSB):

Each of n + 1 processes is assigned a unique process number and has to
decide on a boolean output value just by comparing its value with the others,
such that if all processes participate, each value is output by at least one
processes.

In our terms, this means that the input complex I consists of a single n-simplex along
with all its faces, because there is no input except the process numbers, which are
handled implicitly by the rank-symmetry. For simplicity, we will assume the processes
are named with Π = [n].

As we want to output a boolean value, we have Vout = [1] and the output complex O
has a ground set of V(O) = [1]Π = [1][n]. A subset σ ⊆ V(O) with |prΠ(σ)| = |σ| is
a simplex if dim σ < n or if it is not monochromatic, that is prVout σ = Vout = [1]. An
example of dimension two was depicted in the previous chapter in Figure 2.4(b) on
page 19.

Finally, the task’s carrier map ∆ : I → O is the maximal name-preserving map. It is
therefore not really of interest, as there is only one possible input configuration, and as
long as it is contained in O, every output configuration is allowed for this single input
configuration.

Theorem 3.1 ([CR12, Thm. 7.2]). If n + 1 is not a prime power, then there exists a rank-
symmetric wait-free WSB protocol for n + 1 processes.∗

The rest of this thesis will be dedicated to showing and comparing some ways of
proving this theorem using the Anonymous Computability Theorem (or, more precisely,

∗Note that the converse is true as well, as proven in [CR10], but not of interest to this thesis.
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3 Weak Symmetry Breaking

Corollary 2.10 on page 24) by constructing a protocol complex P as a subdivision of
I . We do not need to worry about the decision map δ : P → O being carried by the
task’s carrier map ∆ because ∆ is maximal. As the essential information in δ is whether a
process pi decides 0 or 1, we understand B = prVout ◦δ as a labeling of P . Obviously, this
means that no simplex σ ∈ P can be B-monochromatic in the sense that |B(σ)| = 1.

3.1 Subdivision

On our way to P , we will subdivide I in various ways, always associating boolean
values via a map called B. This will be done in two steps: The first generates an oriented
subdivision in which all B-monochromatic n-simplices with same B-coloring can be
paired and have different orientation. The second one then resolves these monochro-
maticities by finding a path of even length between two monochromatic simplices of
different orientation and modifies it to contain no monochromatic simplices at all. While
the second step can be done in different ways, the first step as well as the whole setup is
taken from [CR12, Sect. 5].

LetLn be a chromatic pseudomanifold with a binary labeling B : V(Ln)→ [1], coherently
oriented by D : Ln → [1]. TheCONTENT content of Ln, C(Ln), is the sum of its monochromatic
n-simplices counted by orientation:

C(Ln) = ∑
σ∈Ln

dim(σ)=n
|B(σ)|=1

(−1)B(σ)·nD(σ)

Our subdivision will be constructed in a way that for integers k0, k1, . . . , kn−1 with
k0 ∈ {0,−1} it has a content of exactly

C = 1 +
n−1

∑
i=0

(
n + 1
i + 1

)
ki. (3.1)

In order for the second step to resolve all monochromaticities, we have to have equally
many positively and negatively oriented B-monochromatic n-simplices, so we want
to have C = 0. Number theory tells us, that (without our restriction on k0) this is
exactly the case if (n+1

1 ), (n+1
2 ), . . . , (n+1

n ) are relatively prime, i.e. they have a greatest
common divisor of 1 [DD99]. This in turn is given if n + 1 is not a prime power [Dic19,
p. 274]. Finally, our restriction on k0 does not interfere with the solvability, because by
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3.1 Subdivision

(n+1
1 ) = (n+1

n ) only the sum k0 + kn−1 needs to be fixed. Thus, our construction only
works if n + 1 is not a prime power.

We construct the subdivision Ψ inductively by subdividing and B-labeling the faces of
I by dimension. The goal is to have exactly |ki| 0-monochromatic i-simplices in the
subdivision of every i-face of I , such that a final coning over Ψ(∂ I) will generate a
0-monochromatic n-simplex for each of them, oriented according to sgn(ki).

We start with the 0-faces, which are obviously copied into the subdivision without
changes, and set their B-labeling to 1 + k0. Given the subdivision Ψ up to dimension
i− 1, an i-face σi of I is subdivided as follows: Let τi be a 1-monochromatic i-simplex,
then build the cone over Ψ(∂ σi) for τi and orient it coherently in a way that at least one∗

i-corner has the orientation (−1)i+1. Up to now, this subdivision of σi has no 0-mono-
chromatic i-simplex, because every i-simplex contains at least one of the vertices of τi,
which is 1-monochromatic. So we subdivide it such that exactly |ki| 0-monochromatic
n-simplices of orientation sgn(ki) are created. While there might be more clever ways to
do so, Lemma 2.7 on page 15 gives us an easy one, by subdividing existing non-mono-
chromatic simplices of appropriate orientation twice. Another, more global way with an
upper bound on the number of subdivisions needed is described in [ACHP13, Sect. 4.1].
Finally, copy this subdivision to all other i-faces of I , preserving the rank of process
IDs.

Figure 3.1 on the following page illustrates the operations that take place. That example
uses n = 5 and solves the diophantine equation 3.1 by k0 = −1, k1 = 1, k2 = 1, k3 = −2
and k4 = 0. It thus has its outer vertices labeled 1− k0 = 0, has |k1| = 1 positively
oriented 1-simplex in every 1-face, and |k2| = 1 positively oriented 2-simplex. Note that
the subdivision is rank-symmetric on the boundary. It could thus be copied to all other
2-faces of the 5-simplex that it is itself a 2-face of (not depicted) while preserving the
order of the outer vertices.

After the subdivision up to dimension n− 1 has been constructed, simply cone over
Ψ(∂ I) for a 0-monochromatic n-simplex τn and orient the whole complex such that τn is
oriented positively. Apart from τn itself, this introduces one 0-monochromatic n-simplex
for every 0-monochromatic i-simplex in each of the Ψ(σi), and because every n-simplex
contains at least one vertex from τn, no 1-monochromatic n-simplices can occur. We now
only have to check the orientations of the 0-monochromatic n-simplices.

∗Actually, all i-corners have the same orientation [CR08, Lem. 2.4], but we only need to have one oriented
this way.
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3 Weak Symmetry Breaking

Therefor, remember that in every dimension i, in subdivision of σi at least one i-corner
was oriented as (−1)i+1. Let ρi be this i-corner. By its definition, there is a sequence
ρ0 ( ρ1 ( · · · ( ρi of faces of ρi such that for every j ∈ [i], ρj ⊆ Ψ(σj) where σj is a j-face
of σi and thus also of I = σn. Now each of these faces ρj generates an n-simplex τj ∗ ρj in
τn ~Ψ(∂ σn−1) where τj is an (n− j− 1)-face of τn, and each consecutive pair of faces ρj,
ρj+1 generates a pair of n-simplices τj ∗ ρj, τj+1 ∗ ρj+1 that shares an (n− 1)-face, namely
τj+1 ∗ ρj. Because τ0 is itself an (n− 1)-face of τn, τ0 ∗ ρ0 and τn share an (n− 1)-face as
well, yielding an n-simplex path from τn to τi ∗ ρi of length i + 2. Because τn is oriented
positively and an even length n-simplex path means that the end simplices are oriented
contrarily, this makes τi ∗ ρi have the same orientation as ρi had in Ψ(σi), i.e. (−1)i+1.

Now it is fairly obvious that every other i-simplex in Ψ(σi) has the same orientation
as its n-dimensional counterpart, because every i-simplex path inside Ψ(σi) induces
an n-simplex path inside Ψ(σn) of the same length, in particular those connecting the
0-monochromatic simplices in Ψ(σi) to their respective i-corner.

τ1

02

1

τ2

Figure 3.1: The rank-symmetric subdivision of a 2-face of σ5 corresponding to the choice
k0 = −1, k1 = 1, k2 = 1 (and k3 = −2, k4 = 0, which do not yet have an effect
in this dimension).
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3.2 Simplex Paths

3.2 Simplex Paths

Having subdivided the input complex I , we now have multiple 0-monochromatic
n-simplices, one half negatively and one half positively oriented. This enables us
to iteratively pick two 0-monochromatic simplices of opposite orientation and find an
n-simplex path between them. This path will be of even length because the end simplices
have opposite orientations and passing from one simplex to the next of the path flips
the orientation each time. If we furthermore require that the path generally does not
contain any other monochromatic simplices, it can then be modified such that it contains
no more B-monochromatic simplices of any kind. How exactly this modification is done
will be handled in the next chapter.

If we are interested in minimizing the number of protocol layers or, equivalently, the
number K > 0 of iterated standard chromatic subdivisions applied to the input complex
that is guaranteed to exist by Theorem 2.9 on page 23, the application of whatever
algorithm we choose to all the paths would be the most costly step [ACHP13, Sect. 5 f.].
That is because finding non-intersecting (or “disjoint”) simplex paths in the current
complex means finding disjoint paths in a graph that does not have very predictable and
nice properties, which is a known problem that is hard to solve [Kar75].

But intersecting paths cannot be processed independently, because different subdivisions
might be applied to the simplices of their intersection by the two parallel invocations
of the following algorithms. So to avoid having to find disjoint paths, we must find
and demonochromatize one path after the other, at worst causing one simplex to be
subdivided again and again.
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4 Simplex Path Demonochromatizing

We will now describe methods of subdividing a simplex path without changing its
boundary (in order to preserve the rank-symmetry of the subdivision from Chapter 3)
such that they do not contain any monochromatic simplices.

In contrast to the previous step in Chapter 3, which required that our dimension n is
chosen such that n + 1 is not a prime power, this problem can be considered and solved
in any dimension n > 2.

Simplex paths, just as simplicial complexes, can be thought of in at least two ways:
Geometrically and combinatorially. While for subdivisions we typically think about the
geometric version, proving that we actually eliminate monochromaticities is easier in
the combinatoric model.

Given an arbitrary simplicial complex K, aGEOMETRIC
SIMPLEX PATH geometric simplex path in K of length ` is an `-

tuple Σ = (σ1, . . . , σ`) of n-simplices of K such that σi,i+1 := σi ∩ σi+1 is an n− 1-simplex
of K for each i ∈ {1, 2, . . . , ` − 1}. We will sometimes also call the subcomplex of K
containing only the simplices of Σ along with its faces a geometric simplex path as
well.

When dealing with a simplicial complex K binarily-labeled by B, a geometric simplex
path in standard form (also calledATOMIC atomic) is of even length and has only two B-mono-
chromatic simplices σ1 and σ`, which are 0-monochromatic.

An n-dimensionalABSTRACT
SIMPLEX PATH (abstract) simplex path P = (I, C, V) of length ` is a triple of

• an [n]-tuple I ∈ [1]n+1, describing the binary labeling of the „first” n-simplex,
• an (`− 1)-tuple C ∈ [n]`−1, specifying a series of vertices Ci to serially „flip” over

their opposite faces, and
• an (`− 1)-tuple V ∈ [1]`−1, giving the binary labeling of the vertex created by each

flip in C.
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The only requirement we impose on these tuples is that C satisfies a „no back-flip”
condition: Ci 6= Ci+1 for all i ∈ {1, 2, . . . , `− 2}.

For convenience, we will define

ej
i :=

Ii if last(i, C(1, j− 1)) = ∞

Vlast(i,C(1,j−1)) else

where last(i, C(i, j − 1)) := max{k ∈ {1, . . . , j − 1} |Vk = i}. This way, ej
i gives the

binary label of the vertex named i after j flips. We will call Rj :=
(

ej
0, . . . , ej

n

)
the j-th

simplex of the path P, which is b-monochromatic if ej
i = b for all i ∈ {0, 1, . . . , n}. Note

that R1 = I.

We will care about atomic simplex paths, meaning that ` is even and the only monochro-
matic simplices are R1 and R`, which are 0-monochromatic. In this case, we can shorten
the definition to P = (C, V) as I = (0, . . . , 0) is mandatory.

Quite obviously, any binarily-labeled geometric simplex path can be converted into
a unique abstract simplex path: Consider a geometric simplex path Σ = (σ1, . . . , σ`)

colored with [n] by Π and binarily labeled by B. We define its ASSOCIATED
ABSTRACT
SIMPLEX PATH

associated abstract simplex
path P = (I, C, V) by setting

Ii := B(vi) for i ∈ [n], where vi is the unique vertex of σ1 with Π(vi) = i,

Cj := Π(σj+1 \ σj) = Π(σj \ σj+1) for j ∈ {1, 2, . . . , `− 1}, and

Vj := B(σj+1 \ σj) for j ∈ {1, 2, . . . , `− 1}.

While the inverse transformation is possible as well, it is not unique because some
vertices actually may or may not be the same in the geometric version (cf. Figure 4.1
on the following page). Thus, when we define a subdivision we will first define it on
the geometric version, and then analyze its effect on and further work with the abstract
version.

What follows are two different constructive proofs of the following theorem:

Theorem 4.1. Given an atomic geometric simplex path Σ labeled binarily by B and colored by
Π, there is a Π-chromatic subdivision Ψ(Σ) such that ∂ Ψ(Σ) = ∂ Σ and Ψ(Σ) contains no
B-monochromatic simplices.
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4 Simplex Path Demonochromatizing

σ1
0

1

2

1

2

0σ1

Figure 4.1: Two 2-dimensional geometric simplex paths of length 4 with binary labeling
represented using the colors black and white, sharing the same associated
abstract simplex path I = (0, 0, 0), C = (1, 2, 1) and V = (0, 1, 0).

0
0

Figure 4.2: Height graph of the paths in Figure 4.1. If nothing else is denoted, the lower
left vertex is always at position (1, 0).

The workings and effectiveness of the algorithms will be illustrated using what is called
theHEIGHT GRAPH height graph of an abstract simplex path P = (I, C, V), a partially marked graph
embedded in N2

0 with the vertices {(i, hi) ∈ N2
0 | i ∈ [`]− 0} where hi := #(1, B(σi)) is

the number of vertices of σi labeled with 1 by B. Edges exist between each (i, hi) and
(i + 1, hi+1) for i = 1, . . . , `− 1. If we have hi = hi+1, we furthermore mark the edge
between (i, hi) and (i + 1, hi+1) with Vi. When the heights differ and the edge has a
slope, we know that Vi = 1 if the slope is rising, and Vi = 0 if it is falling, thus we do not
need to label all edges. See Figure 4.2 for an example.

For consistency, we will also use the shortcut hi,i+1 := #(1, B(σi,i+1)) for the connecting
(n − 1)-faces. If we need to denote, which path the height of a simplex or face is
associated to, we will write hi(P) for the height at position i of path P.

4.1 Algorithm by Castañeda and Rajsbaum [CR12]

The earlier method of the two that we will present originated from [CR12] and was
heavily modified and shortened in [ACHP13]. We will follow the modified version for
its smaller case differentiation, but deviate and fall back to the original version from
[CR12] in cases where we deem the modified version insufficient. Note though, that
our naming conventions differ from both. Most importantly, our first simplex is called
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4.1 Algorithm by Castañeda and Rajsbaum

σ1 instead of σ0, and we will use the number of vertices labeled with 1 instead of those
labeled with 0.

The algorithm will use only one kind of subdivision: Assume an n-dimensional geomet-
ric simplex path Σ of length ` > 4, labeled with [1] by B and colored with [n] by Π, along
with its associated abstract simplex path P = (I, C, V), and a quadruple (m, D, Q, s) such
that

• 2 6 m 6 `− 2, specifying at which simplex boundary the expansion takes place,
• D is an [n]-tuple (d0, . . . , dCm−1,−, dCm+1 . . . , dn) of boolean values, giving the

binary labeling of the newly created vertices,
• Q is a t-tuple of values from Π− Cm = [n]− Cm that defines how the new path

routes through the subdivision, such that
◦ q1 = Cm−1 and qt = Cm+1,
◦ for every l ∈ [n]− Cm we have that #(l, Q) is even,
◦ for all 1 6 i < j 6 s and all s + 1 6 i < j 6 t, there exists l ∈ [n]− Cm such

that #(l, Q[i, j]) is odd, and finally
• 1 6 s < t− 1 defines when we flip over σm,m+1 and thus splits Q into a part that

happens in the first and a part that happens in the second original simplex.

Then the EDGE EXPANSIONedge expansion (m, D, Q, s) of P is constructed as follows: Do the basic chromatic
subdivision of σm,m+1 and call it S. Then extend B by setting B(vi) = di where vi is the
unique vertex of the interior of S with Π(v) = i. Afterwards, set v and v′ to be the
unique vertices of σm \ σm+1 and σm+1 \ σm, respectively, and build S ~ {v, v′}. Replace
the old σm and σm+1 by this cone. Note that neither the other simplices nor the boundary
of Σ are changed by this subdivision.

Using the presentation from Proposition 2.5 on page 12, every (n− 1)-simplex of the
subdivision of σm can be described as v ∗ (o0, o1, . . . , oCm−1,−, oCm+1, . . . , on) or directly
as (o0, o1, . . . , oCm−1, 0, oCm+1, . . . , on) where oi ∈ [1]. The same holds true for σm+1 by
coning with v′ or by putting a 1 at the Cm-th position.

We define U to be the t-tuple of binary [n]-tuples with u1 = (δj,Cm−1)
n
j=0 and the transition

between ui−1 and ui being exactly a flip the qi-th component. This gives us the final
geometric path

Σ̃ :=
(

σ1, . . . , σm−1︸ ︷︷ ︸
before σm

, v ∗ u1, . . . , v ∗ us︸ ︷︷ ︸
in σm

, v′ ∗ us, . . . , v′ ∗ ut−1︸ ︷︷ ︸
in σm+1

, σm+2, . . . , σ`︸ ︷︷ ︸
after σm+1

)
.
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4 Simplex Path Demonochromatizing

σ1

0

1

2

Figure 4.3: An edge expansion with input data m = 2, D = (1,−, 0), Q = (0, 2, 2, 0) and
s = 2 is applied to a geometric simplex path Σ of length ` = 2 whose associ-
ated abstract simplex path is I = (0, 0, 0), C = (0, 1, 0), and V = (1, 0, 0).

0

1

2

Figure 4.4: Special case of applying edge expansion to a simplex path of length ` = 2.

Note that us appears twice: The simplices right before and after flipping over σm,m+1

share the same (n− 1)-face in the basic chromatic subdivision of σm,m+1.

Concerning the associated abstract simplex path, we have the following changes:

Ĩ = I,

C̃ = (C1, . . . , Cm−1, q2, . . . , qs, Cm, qs+1, . . . , qt−1, Cm+1, . . . , C`),

Ṽ = (V1, . . . , Vm−2, w1, . . . , ws, Vm, ws+1, . . . , wt−1, Vm+1, . . . , V`)

where

wi :=

ei
qi

if #(qi, (q1, . . . , qi)) is even,

dqi if #(qi, (q1, . . . , qi)) is odd.

For an example see Figure 4.3, where an edge expansion is applied to a two-dimensional
geometric simplex path of length four, turning it into a path of length six.

Trivial path Before the regular algorithm begins, let us handle a special case to know
where we are heading: The trivial atomic path of length ` = 2. No matter the dimen-
sion n, all we have to do to eliminate the two monochromatic n-simplices is do an edge
expansion with m = 0, D = (−, 1, . . . , 1) (assuming C1 = 0, otherwise put the dash
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4.1 Algorithm by Castañeda and Rajsbaum

σm σm+1σm−1,m σm,m+1 σm+1,m+2

m− 2
m− 3

m− 1
m− 2

m− 1
m− 2

m− 1
m− 2

m− 2
m− 3

Figure 4.5: The restrictions on the number of 1-vertices (heights) of the few n-vertices
and connecting faces preceding the subdivision point. The numbers at the
top are possible heights and are connected with each other if that particular
combination is possible. At the bottom, the simplex path is indicated by its
dual complex.

at the appropriate position Cm) and any Q and s. Even though the definition of edge
expansion requires ` > 4 and m > 2, we can do the same for these values, except the
embedding into the earlier and later parts of the path ceases to apply. Obviously, the
subdivision contains no monochromatic n-simplices of any kind, as every n-simplex
contains at least one vertex from the subdivision’s interior (all labeled 1) and one from
σ14 σ2 (all labeled 0). See Figure 4.4 on page 34 for an example in dimension 2.

Subdividing point In any other atomic geometric simplex path S with associated
abstract path P, we first have to find a SUBDIVIDING

POINTsubdividing point m, defined as the minimal m
such that

#(0, B(σm+1,m+2)) > n + 2−m ⇐⇒ #(1, B(σm+1,m+2)) = hm+1,m+2 6 m− 2.

Note that if such an m exists, because m is minimal this implies that hm,m+1 > m− 2. By
considering that the two faces σm,m+1 and σm+1,m+2 share n− 1 vertices and thus each
only has one vertex the other does not, it is obvious that

1 >

6m−2︷ ︸︸ ︷
hm+1,m+2 −

>m−2︷ ︸︸ ︷
hm,m+1 > − 1

=⇒ m− 2 > hm+1,m+2 > hm,m+1 − 1 > m− 3. (4.1)

This gives us bounds on the height of quite some n-simplices and their faces. They are
summed up in Figure 4.5, which can be constructed from right to left using Equation (4.1)
and the facts that a) an (n− 1)-face can only have at most one 1-vertex less but never
more than its n-dimensional co-faces, and b) any σi can have at most i − 1 vertices
labeled with 1, because from the starting simplex σ1 that was 0-monochromatic, each
step introduces at most one new 1-vertex.
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4 Simplex Path Demonochromatizing

The subdivision point m is guaranteed to exist, as the number of vertices labeled with
1 is bounded not only by n + 1, as no n-simplex must be 1-monochromatic, but also
by `

2 : We already established that hi 6 i− 1. By symmetry, at least hi flips have to follow
the vertex σi to reach the 0-monochromatic end-simplex σ`, so i + hi 6 `. Thus, for
i = m + 2,

` > m + 2 + hm+2 > m + 2 + hm+1,m+2 > m + 2 + m− 3 = 2m− 1.

Considering that ` is even and m is an integer, m 6 `+1
2 also implies m 6 `

2 .

4.1.1 Case 1: Asymmetric∗

If hm 6= hm+1, we apply an edge expansion at position m and call the resulting subdi-
vision Ψ. Our aim is to produce two 0-monochromatic n-simplices in Ψ(σm ∪ σm+1) so
that we can connect one to each end of the original simplex path in order to receive
two shorter paths. Because hm 6= hm+1, exactly one of the two vertices in σm 4 σm+1

is labeled with zero, the other with one (hence the name “asymmetric”), thus ev-
ery monochromatic (n− 1)-simplex in Ψ(σm,m+1) induces exactly one monochromatic
n-simplex in Ψ(σm ∪ σm+1). In Figure 4.5 on page 35 we can see that hm 6= hm+1 implies
hm,m+1 = m− 2. Let Π0 = {i1, . . . , in−(m−2)} be the names assigned to the 0-vertices of
σm,m+1. We then color the subdivision using dj = 1 if j ∈ Π0 \ {i1} and dj = 0 otherwise.
This will generate exactly two 0-monochromatic (n− 1)-simplices in Ψ(σm,m+1), which
is best explained in the language of Proposition 2.5 on page 12: Their corresponding
boolean tuples have zeros at places i2, . . . , in−(m−2), units at all positions not in Π0 and
either a zero or unit in position i1. These two (n− 1)-simplices share an (n− 2)-face,
which means that their corresponding 0-monochromatic n-simplices in Ψ(σm ∪ σm+1)

share an (n− 1)-face and are thus oppositely oriented. We can therefore construct short-
est paths of even length from each end to one of the two newly created monochromatic
simplices and call them P1 and P2. Note that we do not generate any 1-monochromatic
n-simplices, because all vertices named i1 in the subdivision are labeled with 0.

∗In [ACHP13], case A lists two conditions that cannot be fulfilled simultaneously, while case B treats one
case that could have been addressed more easily in the same way as an earlier one. Thus, our cases 1
and part of 2 correspond to their case A, whereas the other part of our case 2 together with our case 3
correspond to their case B. Compared with [CR12], our case 1 maps to their cases C and D, our case 2 to
their cases A and E, and our case 3 to their case B.
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4.1 Algorithm by Castañeda and Rajsbaum

0

1

P1

P2

τ2
τ1

0

1

P1

P2

Figure 4.6: Example of resolving an intersection of P1 with P2 in the case 1 by subdividing
a face of τ2 in two dimensions, where m = 3.

Intersection resolution Both new 0-monochromatic n-simplices lie “on the same side”
of σm,m+1, i.e. they share the same vertex from σm 4 σm+1. So obviously, one of
the two paths P1 and P2 crosses Ψ(σm,m+1), meaning that there is an (n− 1)-simplex
σ ∈ Ψ(σm,m+1) whose two cofaces are contained in the path, while the other does not.
We will call the non-crossing path P1, the crossing one P2 and their end-simplices τ1

and τ2, respectively. Note that P2 crosses Ψ(σm,m+1)—without loss of generality—right
before ending in its newly created 0-monochromatic n-simplex τ2 (cf. Figure 4.6). Now
we cannot guarantee that P1 and P2 are intersection-free, which, if they are not, would
prevent invoking the whole algorithm recursively on them while still making sure it
terminates. If they intersect, however, we can assume by our construction that they
intersect in τ2, and due to the minimal length of the paths we know that τ2 is then not
only the last simplex of P2, but also the second last simplex of P1 as it is neighboring to
τ1. Furthermore, we can be sure that the unique face of τ2 that is crossed by P2 is not
crossed by P1, because it is a face of the subdivision of σm,m+1 which is only crossed by
P1 as we already established. Vice versa, the two faces of τ2 that are crossed by P1 are
not crossed by P2.

For easier indices, we reverse the paths P1 and P2 and let (C̃, Ṽ) be the abstract and
(σ̃1, . . . , σ̃˜̀) the geometric form of P1. Then we apply an edge expansion to the face σ̃2,3

and label it with di = 1− δi,Cm − δi,C̃1
, i.e. label every vertex with 1 except for those

colored with Cm and C̃1.

An important aspect for all our algorithmic work is that we do not really care about
the actual names of the vertices. We cared when first subdividing in Chapter 3 in
order to be rank-symmetric, but we no longer do now, because we do not modify
the boundary anyway. Thus for every step we do, we can reassign the names at our
discretion by applying some permutation on [n], thereby making it much easier to talk
about the simplices of a subdivision in terms of the boolean tuples from Proposition 2.5
on page 12.
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We will thus assume for now that Cm = 0 and C̃1 = 1. Note that these are two different
vertices, because otherwise P1 and P2 would share their first two simplices. Then the
labeling can be written more easily as D = (0, 0, 1, . . . , 1). As can be seen in Figure 4.6 on
page 37, this labeling enables us to let P2 end in the 0-monochromatic simplex (1, 0, . . . , 0)
whose only inner vertex is named Cm = 0. Note that this modified version of P2 has the
same length as P2 had originally. It furthermore generates a trivial atomic path starting
at τ1 and ending at the simplex (0, 1, 0, . . . , 0) after a single flip C̃1 = 1.

We now need to deal with the rest of P1. Assume by S[n]-action that C̃2 = 2, as it can
be neither C̃1 = 1 by the no-backflip condition, nor Cm = 0 because P1 does not cross
Ψ(σm,m+1). If C̃3 ∈ {C̃1, Cm} = {0, 1} like in our figure, we are in luck and simply
connect the 0-monochromatic simplex (1, 1, 0, . . . , 0) to the original end of P1 by the
path

C̃′ := (2, {0, 1} − C̃3, C̃3, C̃4, . . . , C̃˜̀).

Note that flipping C̃2 = 2 brings us on the other side of σ̃2,3 where nothing is 0-mono-
chromatic anymore, hence this new path is atomic and of the same length as P1 has
originally been. Note additionally that this case always applies in two dimensions.

If in higher dimensions C̃3 /∈ {C̃1, Cm} = {0, 1}, we assume by S[n]-action that C̃3 = 3.
Starting at (1, 1, 0, . . . , 0) might now yield a too long path, because C̃3 = 3 would have to
be flipped twice. Thus, we also set d3 = 0 in the edge expansion and then construct the
new path by starting at the simplex (0, 1, 0, 1, 0, . . . , 0) and work our way to the original
end of P1 by setting

C̃′ := (2, 1, 3, C̃4, . . . , C̃˜̀).

The path is atomic again, however, we now also have the 0-monochromatic simplices

α1 = (1, 1, 0, 1, 0, . . . , 0), α3 = (1, 0, 0, 1, 0, . . . , 0),

α2 = (1, 1, 0, 0, 0, . . . , 0), α4 = (0, 0, 0, 1, 0, . . . , 0).

Luckily, as can be seen from the boolean tuple representation, α1 and α2 share an (n− 1)-
face and thus form a trivial atomic path, as do α3 and α4.

Length calculation We will now have a look at the lengths of the paths P1 and P2,
which both need to be smaller than ` in order for a recursion of this algorithm to finish
at some point. As we have seen, their lengths do not change if we have to resolve
an intersection, which we can thus ignore and only consider the first edge expansion
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we have done. The path starting at σ1 contains m− 1 simplices before it even enters
our subdivision. The first simplex of the new path inside the subdivision (which is its
m-th simplex in total) will be σ̃m = (0, . . . , 0, 1, 0, . . . , 0) in boolean tuple representation,
where the unit is at position Cm−1. The two monochromatic simplices have at most
m units in their representation: σm,m+1 contains m− 2 vertices labeled with 1, which
have to be exchanged for their inner counterparts. One more unit may be needed if the
monochromatic simplices are located in σm+1, which means crossing σm,m+1. Another
one may occur if the inner instead of the outer vertex named i1 is chosen.

Now it is important to note that if the monochromatic simplices lie in σm+1, then
hm+1 < hm which according to Figure 4.5 on page 35 implies that hm = m − 1. This
means that Vi = 1 for all 1 6 i 6 m− 1, in particular Vm−1 = 1 and thus em

Cm−1
= 1.

Hence, the vertex named Cm−1 of the both monochromatic simplices is the inner one.
Summed up, this means that if we have a unit at position Cm in the boolean tuple
representation of the monochromatic simplices, then we also have one at Cm−1. This
makes σ̃m have at most m− 1 positions that need to be flipped in order to reach any of
the two monochromatic simplices, meaning that one is even as close as m− 2 additional
flips, resulting in a total length of at most m + m− 2 = 2m− 2 6 `− 2 for the new path
that starts at σ1.

Symmetrically, the first simplex of the path starting at σ` that lies inside our subdivision
is its (`−m)-th simplex, its representation as boolean tuple having exactly two units,
this time at positions Cm+1 and Cm. By symmetry, a similar argument as before holds
true concerning the equivalence of having to flip over σm,m+1, and the outer vertex
named Cm+1 being labeled with 1. Thus, we again have a path of length at most
`−m + m− 2 = `− 2 that starts at σ`.

4.1.2 Case 2: Symmetric 0

If hm = hm+1 = hm,m+1 ∈ {m − 1, m − 2} and thus B(σm 4 σm+1) = {0} (hence the
name “Symmetric 0”), we only need to generate one 0-monochromatic (n− 1)-simplex
in the subdivision of σm,m+1 in order to have two 0-monochromatic n-simplices in
Ψ(σm ∪ σm+1), one on either side of σm,m+1. So again we do an edge expansion with
m = m, and again, if Π0 = {i1, . . . , in−(m−1)} are the names of the 0-vertices in σm,m+1, we
set dj = 1 if j ∈ Π0 and dj = 0 otherwise. Note that i1 is not treated in a special way this
time. We end up with exactly one 0-monochromatic (n− 1)-simplex in Ψ(σm,m+1) and
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0 0

1

0 0

1

Figure 4.7: Problematic intersection in case 2 for the input path C = (2, 0, 1, 0, 1, 0, 2),
V = (1, 0, 1, 0, 0, 0, 0): The black paths would normally intersect unresolvably
in two simplices, which is why we instead choose the red path.

thus two neighboring 0-monochromatic n-simplices in Ψ(σm ∪ σm+1), but no 1-mono-
chromatic ones, since every n-simplex of the subdivision contains exactly one vertex
from σm4 σm,m+1, which are both labeled with 0.

Length calculation When we now construct the shortest paths from σ1 to each of the
new monochromatic simplices, the same analysis as above shows that their lengths are
m− 1 + hm,m+1 and m− 1 + hm,m+1 + 1 = m + hm,m+1 for the monochromatic simplex
in σm and σm+1, respectively. Note that because of hm,m+1 6 hm 6 m− 1, both lengths
are shorter than ` and thus useful for the recursion. But no matter the value of m, we
see that the shorter P1, the one that leads to the simplex inside σm, is of even length if
and only if hm,m+1 = m− 1, whereas it is odd if hm,m+1 = m− 2. If hm,m+1 = m− 1 we
are in luck, because no intersection of P1 with P2, the shortest path of even length from
σ` to the other monochromatic simplex, can occur, as they both stay on “their side” of
σm,m+1.

Intersection resolution However, if hm,m+1 = m− 2, intersections could occur because
both paths have to cross the face σm,m+1. When Cm−1 6= Cm+1 we can either easily avoid
any intersection by choosing the shortest path appropriately, or the occurring intersec-
tions can be resolved in the same way as in case 1. But in the event that Cm−1 = Cm+1,
an example of which can be seen in Figure 4.7, there is no easy way to construct an
intersection-free path that is still shorter than `. Thus in this very special case, we only
construct one path P̃ that starts at σ1, ends at σ`, and whose length is still exactly `. Inside
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our subdivision, it immediately crosses the face σm,m+1, corresponding to the parameter
Q = (Cm−1, Cm+1) of the edge expansion. If we assume Cm−1 = Cm+1 = 1 and Cm = 0
by S[n]-action, the only two n-simplices of the subdivision contained in this new path,
we will call them τ1 and τ2, correspond to the tuples (0, 1, 0, . . . , 0) and (1, 1, 0, . . . , 0).
Thus, they each contain n− 1 vertices of the original simplex σm,m+1. Then τ1 and τ2

have to be non-monochromatic, as we will see in a moment, thus P̃ is atomic. Both
0-monochromatic n-simplices of our subdivision in turn are not part of P̃ and can be
handled separately as a trivial atomic path.

If τ1 and τ2 were 0-monochromatic then hm,m+1 = 1, which would imply hm = 1 and
m = 3. Since V1 = 1 we necessarily have Vm−1 = V2 = 0, otherwise h3 > 2 > 1, and thus
we know that em

Cm−1
= em

1 = 0. But because τ1 and τ2 have a unit at position 1 in their
boolean tuple representation, they contain the inner vertex of the subdivision named
1 which is labeled oppositely with 1, which contradicts the assumption that they were
0-monochromatic.

We now have to confirm that this special case will not reoccur recursively bnforever. We
note that h̃m,m+1 := #(1, B(τ1 ∩ τ2)) = hm,m+1± 1, depending on Vm−1. If Vm−1 = 0, then,
as detailed above, h̃m,m+1 = hm,m+1 + 1 = m− 2+ 1 = m− 1. Thus, this special case can-
not occur, because it requires h̃m,m+1 = m− 2. Otherwise, h̃m,m+1 = hm,m+1 − 1 = m− 3,
in which case m̃ = m− 1 holds for the new subdivision point m̃.

4.1.3 Case 3: Symmetric 1

If neither of the previous cases applies, we know that hm,m+1 6= hm = hm+1, which
implies hm,m+1 = hm−1,m = m− 2 and hm = hm+1 = m− 1 according to Figure 4.5 on
page 35. Regrettably, in this situation we have that B(σm4 σm+1) = {1} (hence the name
“Symmetric 1”), meaning that simply doing an edge expansion with m = m will not
create any 0-monochromatic simplices at all.

Therefore, we will first apply an edge expansion at m = m− 1. This expansion works
exactly as detailed in case 1, because we have that hm−1 = hm−1,m = m− 2 < m− 1 = hm.
Merely the length bound of the path joining one of the newly created 0-monochromatic
simplices (we will call it σ′) with σ` might not hold true, but this is no big loss because
we only need it until it crosses σm,m+1 after at most m− 1 simplices. The bound on the
other path joining σ1 obviously does hold true, because we even applied the expansion
one simplex earlier.
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Cm

Cm

σm

Figure 4.8: Edge expansion in case 3 (symmetric 1).

After this expansion, we can be sure that the coface of σm,m+1 in the subdivision of σm

has a 0-vertex named Cm, because the vertex of σm named Cm was labeled with 1 and
the expansion flips every 1-vertex on the outside into a 0-vertex on the inside. Thus,
we can now apply another edge expansion, this time on σm,m+1 but again following the
rules of case 1 (remember that the Cm-vertex of σm+1 is still labeled with 1). One of the
new 0-monochromatic simplices will as usual be joined by a path to σ`, while the other
one is connected to σ′. By doing the same considerations regarding the length of a path
connecting a 0-monochromatic simplex inside the edge expansion to the next vertex
outside twice, we deduce that this path also has a length of at most 2m− 2, leaving us
with three atomic paths to process instead of two. An example of dimension 2 can be
seen in Figure 4.8.

4.1.4 Repeat

We saw in an exhaustive case analysis that—except for one special case—one application
of this algorithm splits its input path into two or three new atomic paths, all shorter by
at least two simplices than the original one. In the special case, the algorithm yields
only one path of the same length as its input, but we saw that the next application of the
algorithm on this path will not run into this special case again.

Thus, if we apply the algorithm often enough, only paths of length two will remain,
which we dealt with on page 34. All in all, we now have one way to eliminate two
0-monochromatic n-simplices of opposite orientation in the subdivision we constructed
in Chapter 3 at a time, and by repeating the recursion to eliminate all 0-monochromatic
n-simplices.

A quick word on the round complexity of this method: If we ignore the special case for
a moment, we know that any path of length ` 6 2(n + 1) will be eliminated by at most
n + 1 iterations of the algorithm, because its length is reduced by two in each invocation.
Even if we consider the special case, we will need at most twice as many iterations, as we
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know that after every special case a regular iteration follows. Furthermore, each iteration
applies the edge expansion at most twice, so all in all, a path of length ` 6 2(n + 1) is
eliminated by at most 4(n + 1) edge expansions. Longer paths can, however, be easily
chopped into chunks of length at most 2(n + 1) by one preprocessing step that is similar
to the cases we already dealt with, as shown in [ACHP13, Claim 1, p. 198]. Hence, this
method needs at most 4(n + 1) + 2 ∈ O(n) subdivisions to eliminate a single path of
arbitrary length.

4.2 Algorithm by Kozlov [Koz15]

We will now take an approach that was first introduced in [Koz15]. It uses the height
graph extensively, applying various subdivisions in order to reduce the maximal height
of the path until it only consists of 0-monochromatic simplices. Apart from edge ex-
pansions, we will also need another kind: The VERTEX

EXPANSIONvertex expansion of an n-dimensional
geometric simplex path Σ of length ` > 3, labeled with [1] by B and colored with [n] by
Π, along with its abstract simplex path P = (I, C, V), is given by a triple (m, D, Q) such
that

• 2 6 m 6 `− 1, specifying which simplex is subdivided,
• D is an [n]-tuple (d0, . . . , dn) of boolean values, giving the labeling of the newly

created vertices, and
• Q is a t-tuple of values from Π that defines how the new path routes through the

subdivision, such that
◦ q1 = Cm−1 and qt = Cm,
◦ for every l ∈ [n], we have that #(l, Q) is even, and
◦ for all 1 6 i < j 6 t except (i, j) = (1, t), there exists an l ∈ [n] such that

#(l, Q[i, j]) is odd.

Note that the only real difference to the requisites of the edge expansion (defined on
page 33) is that there is no splitting of Q into two parts. This makes sense when we really
construct the vertex expansion: It is the basic chromatic subdivision of σm, whereas in
the edge expansion we subdivided σm,m+1. The rest is completely analogous: We label
the new vertex colored i ∈ [n] with di and reroute our path according to Q just like we
did earlier, except that this time there is no crossing the face σm,m+1. Hence, we end up
with the new path

Σ̃ = (σ1, . . . , σm−1, u1, . . . , ut−1, σm+1, . . . , σ`)
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where the ui as before uniquely describes a simplex of the subdivision of σm by specifying
for each color whether we chose the old outer or the new inner vertex of this color,
exchanging inner and outer of the color qi in the transition from ui−1 to ui. This time,
the abstract simplex path is modified to the following:

Ĩ = I

C̃ = (C1, . . . , Cm−1, q2, . . . , qt−1, Cm, . . . , C`)

Ṽ = (V1, . . . , Vm−2, w1, . . . , wt−1, Vm, . . . , V`)

where wi :=

ei
qi

if #(qi, (q1, . . . , qi)) is even

dqi else.

Compared to the edge expansion, the only difference is the absence of the flip across
σm,m+1, all other formulas stay the same.

Furthermore, we will use the notion of admissible paths, which are concatenations of
atomic paths: An abstract simplex path P = (I, C, V) isADMISSIBLE admissible if R0 = R` = (0, . . . , 0),
` is even, no simplex is 1-monochromatic and when considering all pairs (Ri, Ri+1)

for even 2 6 i 6 ` − 2 either both or no simplices of the pair are 0-monochromatic.
Obviously, atomic paths themselves are admissible as well. The goal of considering
these paths is that if we have a function that takes an atomic path as input and yields
an admissible path as output, we can split its admissible output into atomic parts and
re-apply the function.

4.2.1 Exhaustive expansion

While in the last section we carefully constructed our subdivision such that they intro-
duce exactly two new 0-monochromatic n-simplices and no 1-monochromatic ones, we
will relax this now by specifying exactly which kinds of new monochromatic simplices
to allow.

Given two abstract simplex paths P and P̃, where P̃ is a vertex expansion of P, we
associate the [1]× [n] array∗ A to them, where A0,∗ := Rm(P) and A1,∗ := D:

A =
em

0 (P) em
1 (P) · · · em

n (P)
d0 d1 · · · dn

∗An array is essentially a matrix whose indexing starts at 0.
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As we know from Proposition 2.5 on page 12, every n-simplex in the subdivided version
of σm in P̃ can be uniquely described by mapping each color to a boolean value that
determines whether it contains the inner or outer vertex of that color. We will thus
interpret this [1]× [n] array as all possible chromaticity tuples of n-simplices of σm’s
subdivision: Take the boolean [n]-tuple α associated to an n-simplex σ̃ in the subdivision,
and look at Aα(i),i to know what boolean label its vertex with color i has. Together,
A(α) := (Aα(0),0, . . . , Aα(n),n) describes the whole coloring of σ̃. If it contains only zeros
then σ̃ is 0-monochromatic, if it contains only ones then it is 1-monochromatic.

Exactly the same procedure is possible for the edge expansion if we set A1,i := di only
for i ∈ [n]− Cm and A1,Cm := Vm = em+1

Cm
(P). That way, all but the Cm-th entry describe

the situation inside σm,m+1 and the Cm-th entry chooses between the two vertices of
σm4 σm+1:

A =
em

0 (P) · · · em
Cm−1(P) em

Cm
(P) em

Cm+1(P) · · · em
n (P)

d0 · · · dCm−1 em+1
Cm

(P) dCm+1 · · · dn

For example, the array associated to the edge expansion done in Figure 4.3 on page 34
looks like this:

A =
1 0 0

1 0 0

Note that it is impossible to choose one entry from each column such that they all
have the same value, as was to be expected because the expansion did not yield any
monochromatic simplices.

We will call a simplex (whose corresponding [n]-tuple is α) ON-/OFF-PATHon-path if there is an (and
off-path if there is no) index i satisfying

(1) if P̃ is a vertex expansion, then 1 6 i 6 t− 1,
(2) if P̃ is an edge expansion and

(2.a) α(Cm) = 0, then 1 6 i 6 s or
(2.b) α(Cm) = 1, then s 6 i 6 t− 1,

(3) and in every case
α(j) = #(j, (q1, . . . , qi)) mod 2

for all j ∈ [n] if P̃ is a vertex expansion or for all j ∈ [n] − Cm if P̃ is an edge
expansion.
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Ignoring conditions (1) and (2) for a moment, we will have a closer look at condition (3)
to bridge it to our geometric intuition. We recall that α(j) = 1 means that in the simplex
associated to α, the vertex colored with j is one of the newly added inner ones, while
a value of 0 means that it is an outer vertex. We also recall that Q[1, i] = (q1, . . . , qi)

specifies the routing inside the expansion up to the i-th “flip”, and that we start outside
of our subdivision before doing the first flip defined by q1. Since we stay inside our
subdivision the hole time, having flipped a vertex colored by j an odd number of times
means that it is currently an inner vertex, while an even number of flips means it is an
outer vertex—which is exactly what the equation says.

Condition (1) really does not say much, it just ensures that we still are in the subdivision
(recall that qt, the last flip, already leaves the subdivision and flips to σm+2). Condition (2)
is a bit more interesting, as it takes into account in which part of the edge expansion the
simplex is located, which is encoded in the Cm-th column of A and thus represented by
α(Cm).

So all in all, the combinatorial definition says exactly what our geometric intuition
demanded for the terms “on-path” and “off-path” and, on top of that, even gives us the
index at which the monochromatic simplex is located in the new path if it is on-path:

Lemma 4.2. Given a vertex or edge expansion with parameters (m, D, Q) or (m, D, Q, s),
respectively, that turns a simplex path P into P̃, and an on-path simplex σ along with its
parameter i from the definition of on-path, then the position of σ in P̃ is

• m− 1 + i in cases (1) and (2.a) from the definition of on-path, or
• m + i in case (2.b).

Now, let M(A) := {α : [n] → [1] | A(α) is monochromatic}. If M(A) = ∅, everything
is fine as no new monochromatic n-simplices arose from the expansion. Otherwise,
we could have two situations: Either M(A) describes two “opposite” monochromatic
simplices, one 0-monochromatic and one 1-monochromatic, in which case exactly half of
the entries of A are 0. Or else all elements of M(A) are b-monochromatic, with b ∈ [1].
They cannot mix in this case because more than one b-monochromatic simplex in M(A)

means more than n + 1 entries in A being b, hence less than n + 1 entries are 1− b, not
allowing for any (1-b)-monochromatic simplices.

Note that two simplices with boolean tuple representation α1 and α2 share an (n− 1)-
face if and only if α1 and α2 differ in the image of exactly one input, i.e. there is an i ∈ [n]
such that α1(i) 6= α2(i) and α1(j) = α2(j) for every other j ∈ [n]− i. We can think of all
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σ1

0

1

2

Figure 4.9: Edge expansion on the path from Figure 4.3 on page 34, this time with m = 2,
D = (0,−, 0), Q = (0, 0) and s = 1.

simplices of the subdivision as a graph by setting the vertices to be the simplices and
drawing an edge whenever the simplices share an (n− 1)-face. In the same way, we
have a graph consisting of the tuple representations, which actually is the same. Because
the tuples are boolean, this is exactly the 1-skeleton of a hypercube if we include the
normally invalid tuple (0, . . . , 0). Obviously, because M(A) is a subset of all these tuples,
it is also a subgraph of the hypercube.

We now call an expansion EXHAUSTIVE
EXPANSIONexhaustive if all simplices α ∈ M(A) are either on-path or can

be matched with another neighboring monochromatic simplex of the same kind that
is also off-path in order to form a trivial atomic path that can be resolved as such (see
page 34). Combinatorially, the expansion P̃ is called exhaustive if there exists a perfect
graph-matching on {α ∈ M(A) | α is off-path}.∗

Example 4.3. We will consider one more example that is a bit more interesting than the
one in Figure 4.3 on page 34: Consider the atomic abstract simplex path I = (0, 0, 0),
V = (1, 0, 0), C = (0, 1, 0), which is the same as previously, but this time do an edge
expansion with input data m = 2, D = (0,−, 0), Q = (0, 0) and s = 1. Without any
geometric intuition, we can easily build the associated array just from the definitions:

A =
e2

1 e2
2 e2

3

d1 V2 d2
=

1 0 0

0 0 0

We can see that M(A) contains four elements:

M(A) = {(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}

∗While the definition in [Koz15, Def. 4.3] seems to allow matching on-path with off-path simplices, this is
actually strictly forbidden!
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This is consistent with the geometric picture that can be seen in Figure 4.9 on page 47,
which contains four monochromatic simplices in the subdivision. Two of them are
part of the new simplex path, while the other two are not but are neighboring, so this
expansion should be exhaustive. Indeed, simply matching (1, 0, 1) with its neighbor
(1, 1, 1) satisfies all conditions. To see this, we need to check the on-path condition for all
four vertices:

• For α = (1, 0, 0) we have α(Cm) = α(C2) = α(1) = 0 and thus by condition
(2.a) i = 1. Thus (q1, . . . , qi) = (q1) = (0) and #(j, (0)) = δj,0 = α(j) for all
j ∈ [2] − Cm = {0, 2}. So (1, 0, 0) is on-path, which is consistent with it being
unmatched.

• For α = (1, 0, 1) we also have i = 1 and (q1) = (0), but #(2, (0)) = 0 6= 1 = α(2),
thus (1, 0, 1) is off-path and must be matched, which it was.

• For α = (1, 1, 0) we have α(Cm) = 1 and thus by condition (2.b) i = 1. This gives
(q1, . . . , qi) = (0) again, and α(j) = #(j, (0)) = δj,1 holds for all j ∈ [2]−Cm = {0, 2}.
As such, (1, 1, 0) is on-path and consequently was not matched.
Note that this is where we need to make an exception for Cm: The parameter Q of
an edge expansion can never contain Cm, thus #(Cm, (q1, . . . , qi)) = 0 mod 2 no
matter what Q we are given. If we did not make an exception, this would mean
that all simplices in the subdivision of σm+1 cannot be on-path, which obviously is
not what we want.

• Finally, for α = (1, 1, 1) we again have i = 1 by case (2.b), but regardless of the
choice of i we always have #(2, (q1, . . . , qi)) = 0 6= 1 = α(2) because Q only
contains zeros. Thus (1, 1, 1) is off-path and was matched.

4.2.2 Moves

The actual algorithm will use moves, comparable to the case analysis done in Section 4.1.
They are special types of edge or vertex expansions. In contrast to the earlier approach,
where we first fixed a position in the path, this time the moves apply to different
positions, depending on the type of move.

Summit move If, in an atomic path P = (C, V) of length `, we have a position
2 6 m 6 k − 1 such that hm > hm−1 and hm > hm+1, we call this position a sum-
mit, referring to the height graph at this position (cf. Figure 4.11 on the next page).
Obviously, the path needs to be at least 3 simplices long in order for such an m to exist,
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1

2

0 1

2

0

Figure 4.10: A summit move in a two-dimensional path. Only the relevant simplex σm
of the path is shown.

hm(P)

m

0
0

0 0

hm(P)− 2
m + 1

Figure 4.11: Height graph before and after a summit move, read off Figure 4.10.

and because it is supposed to be atomic we can even assume it to contain 4 simplices.
This implies that hm > 2, because if hm = 1 then hm−1 = hm+1 = 0, contradicting the
atomicity of the path. Furthermore, the even length of the path enables us to assume
that m is odd: If it is not, we simply reverse the path, which makes the same simplex
have an odd index.

Up to S[n]-action, we can assume that (Cm−1, Cm) = (0, 1). Furthermore, because
hm > hm−1, we know that Vm−1 = 1 and thus em

0 = 1. Analogously, hm > hm+1

gives us Vm = 0 and em
1 = 1. Because there has to be at least one vertex labeled with 0 in

the simplex Rm, it might as well be the one colored with 2, so we set em
2 = 0. This makes

the simplex look something like this:

Rm = (1, 1, 0, em
3 , . . . , em

n ).

This simplex is subdivided using a vertex expansion with the input data

m := m, D := (0, 0, 0, em
3 , . . . , em

n ), Q := (0, 1, 2, 0, 2, 1).

An example can be seen in Figure 4.10.

Notice how our knowledge of three vertices is sufficient to fully analyze the effect of
this move on the path. In particular, we note that the summit move is an exhaustive
expansion, because we can see in the array

A =
1 1 0 em

2 · · · em
n

0 0 0 em
2 · · · em

n

that M(A) = {(1, 1, 0, em
3 , . . . , em

n )︸ ︷︷ ︸
=:α1

, (1, 1, 1, em
3 , . . . , em

n )︸ ︷︷ ︸
=:α2

}
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where the last part is identical, thus the two 0-monochromatic simplices are neighbors.
If hm = 2 then em

3 = · · · = em
n = 0, which makes both simplices on-path because

#(j, (q1, q2)) = #(j, (0, 1)) = α1(j) and #(j, (q1, q2, q3)) = #(j, (0, 1, 2)) = α2(j) (choosing
i1 = 2 and i2 = 3, respectively) for all j ∈ [n]. If hm > 2, however, em

j = α1(j) = α2(j) = 1
for at least one j > 3. But because Q only contains 0, 1 and 2, condition (3) for on-path
simplices can never be fulfilled, hence both are off-path.

Furthermore, we can see that the path resulting from the summit move is admissible: It
has length `+ 4, which is even because ` is even, and contains either both or none of the
new 0-monochromatic simplices, as we have just seen. We now have to show that if it
contains them, i.e. if hm = 2, then their indices fall into the same “bucket” of consecutive
even-odd index-pairs. This follows from Lemma 4.2 on page 46, because one of the
simplices has index m + i1 − 1 = m + 1 and the other m + i2 − 1 = m + 2 in the new
path. Because the orientation of the path was chosen such that m is odd, m + 1 and m + 2
fall into the same even-odd-pair, thus the result of a summit move is admissible.

Finally, let us see what impact the summit move has on the height graph of the path. The
only inner vertices of the subdivision are those named 0, 1 and 2 because Q only contains
these three names. We can thus ignore all others in our height consideration because
they are the same as before the move, which enables us to use the generic example in
dimension two from Figure 4.10 on page 49 as general argument for all dimensions,
which yields the height graph change in Figure 4.11 on page 49. In particular we notice
that locally the maximal height of the path was reduced by one.

Generic plateau move Let P = (C, V) again be an abstract atomic simplex path. If
there is a position 3 6 m 6 `− 2 such that hm = hm+1 > hm−1, we call this position a
plateau, again referring to the height graph. Notice that hm > 2 because m− 1 > 2 and
hence σm−1 cannot be monochromatic.

By S[n]-action we can again assume that (Cm−1, Cm) = (0, 1) and because of hm > hm−1

also that Vm−1 = 1. Furthermore, hm = hm+1 gives us that Vm = em
Cm

= em
1 . We now

decide that we want Cm+1 = 2, where 2 could really be any other name by S[n]-action
except 1 which is prevented by the no-backflip condition, and 0, which will be handled
later by the special plateau move.

Then the generic plateau move is an edge expansion with the parameters

m := m, D := (0,−, em
2 , . . . , em

n ), s := 2, Q := (0, 2, 0, 2).
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1 1

0

2

1 1

0

2

Figure 4.12: Two-dimensional generic (blue path) and special (red path) plateau moves.
The colors yellow and green represent binary labels of the respective vertices,
where the same color is labeled with the same value, but different colors
may be labeled differently. White and black have their usual meaning of a
vertex being labeled with 0 or 1.

em
1hm(P)

m

0 em
2 em

1 hm(P)− 1
m

0 em
1 hm(P)− 1

m

Figure 4.13: Excerpt from the height graph of a path before and after applying the generic
(top) and special (bottom) plateau move, read off Figure 4.12.

Again we can see that this move is exhaustive if we have a look at the associated array:

A =
1 em

1 em
2 · · · em

n

0 em
1 em

2 · · · em
n

We note that if not em
1 = · · · = em

n =: b, then M(A) is empty. However, b = 0 is
impossible because then hm = 1, contradicting our choice of m, and b = 1 is impossible
as well because it would make Ri 1-monochromatic. Hence, M(A) is empty and the
expansion is exhaustive.

The resulting path is also atomic, because its length `+ 2 is even and no new monochro-
matic simplices have been introduced as we just saw, thus the only monochromatic
simplices still are the end simplices that are untouched by the expansion, thanks to our
choice of m.

With the same argument as before that only the three vertices with the lowest names
are ever flipped and in fact only the vertex labeled with 0 has another binary label
in the interior that on the boundary, we can use the two-dimensional illustration in
Figure 4.12 to derive the general rule on what happens to the height graph, as can be
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seen in Figure 4.13. In particular we note that the rising edge of the height graph was
pushed towards the end of the path.

Special plateau move In the same scenario that the generic plateau move requires, we
also could have that Cm+1 = 0 (instead of Cm+1 = 2 as above). In this case, we need to
slightly adjust our parameters for the edge expansion: m and D are the same as above,
but we set Q := (0, 0) and s := 1.

Note that our considerations concerning the exhaustiveness of the expansion and the
atomicity of the resulting path hold almost unaltered (of course this time the length
does not change at all, which makes the new path of even length as well), as does the
argument for constructing the height graph from the two-dimensional visualization in
Figure 4.12 on page 51, resulting in the height graph in Figure 4.13. Compared to the
generic plateau move, the special one even has the advantage that it does not extend
the path and could locally reduce the height if Vm+1 = 0, which would mean that a
“widened summit” would be flattened by this move.

With these three moves, we can already achieve part of our goal:

Lemma 4.4. Given an admissible simplex path P, there is a sequence of exhaustive vertex or
edge expansions that transforms P into aLOW ADMISSIBLE

PATH low admissible path, that is, an admissible path with
maximal height 1.

Proof. Assume that P is an admissible path that cannot be reduced to a low admissible
path. Obviously, P cannot be low itself, so maxi hi(P) > 2. Furthermore, we want P to
be a “lowest” path that is not reducible, that is, one of the smallest with respect to the
reverse lexicographic order of their height graphs: Given two paths P and P̃ of lengths `
and ˜̀, we start from the right by comparing h`(P) and h ˜̀(P̃). If they differ, we order P
and P̃ accordingly, if they are the same we proceed to h`−1(P) and h ˜̀−1(P̃) and repeat
the comparison. We simply write P > P̃ if this comparison yields that P is greater than
P̃.

First of all, P cannot contain a summit. If it did, we could apply the summit move
to obtain another admissible path P̃. The new path P̃ must not be reducible to a low
admissible path either, because otherwise P would be too, as the summit move is an
exhaustive vertex expansion. But as we can see in Figure 4.11 on page 49, the height
graphs of P and P̃ are identical after the simplices m and m + 4 respectively, and we

52



4.2 Algorithm by Kozlov

have hm(P) > hm(P)− 1 = hm+4(P̃) which makes P > P̃, contradicting our assumption
that P is minimal.

But if P has no summits, it must have a plateau: Pick 2 6 m 6 `− 1 as the first position
such that maxi hi(P) = hm(P). This implies that hi−m(P) < hm(P) and because there are
no summits hm+1(P) = hm(P). Hence, we have a plateau at position m and can apply
the appropriate plateau move to get a new path P̃. Again, P̃ must not be reducible to a
low admissible path, because otherwise P would be as well by first reducing it to P̃. If
we needed to apply a generic plateau move, the height graphs of P and P̃ are identical
from m + 1 and m + 3 onwards, respectively, as can be seen in Figure 4.13 on page 51.
They first differ in hm(P) > hm(P)− 1 = hm+2(P̃), again contradicting our minimality
assumption. If we needed to apply a special plateau move, the height graphs even
are completely identical except in position m, and according to Figure 4.13 we have
hm(P) > hm(P)− 1 = hm(P̃).

Hence, there is no such path P, which means that all admissible paths are reducible to
low admissible paths using exhaustive vertex or edge expansions.

4.2.3 Low admissible paths

While the three moves are powerful enough to reduce arbitrary admissible paths to low
admissible paths, they all require that maxi hi > 2, which makes them unsuitable for
further reducing low admissible paths. We will therefore continue with other moves
to turn low admissible paths into admissible 0-paths, that is, to paths of even length
containing only 0-monochromatic simplices.

In the following, we always start with a low atomic path P of length `. The path being
low has several consequences, in particular that every simplex except the first and the
last has exactly one vertex labeled with 1. This vertex always has the same name, because
changing to another name would require two flips, one that flips the old name to 0 and
another one that flips the new name to 1, and thus generate an intermediate simplex
that has either height 0 or 2, both impossible in a low atomic path. In terms of our
combinatorics, this means that after applying S[n]-action, we can assume that C1 = 0,
C`−1 = 0 and

R2(P) = R3(P) = · · · = R`−1(P) = (1, 0, . . . , 0).
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0
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0 0

1

2

0

Figure 4.14: The move to flatten a unit applied to a two-dimensional path (clipped to the
relevant simplices σm and σm+1). The red part represents Cm+1 = 1 whereas
the blue part corresponds to Cm+1 = 2.

0 1 0

m

0 0 1 0 0

m + 1

Figure 4.15: Height graph change when flattening a unit, valid for both choices of Cm+1

This enables us to determine the labeling part V of the abstract simplex path completely
from its flipping part C:

Vi = δCi ,0 for 1 6 i 6 `− 1.

Flatten a unit Let us choose an even 4 6 m 6 `− 4 such that Vm = 1 if it exists. The
purpose of this move is to change the parity of m from even to odd. Note that while
earlier we were able to simply reverse the path to change the parity of the position we
applied the summit move on, this is impossible here because we now consider the parity
of a shared (n− 1)-face which is preserved when reversing the path.

We can assume that (Cm−1, Cm) = (1, 0) and Cm+1 ∈ {1, 2} using S[n]-action, which
implies by our earlier considerations that Vm−1 = Vm+1 = 0. The move to flatten a unit
is an edge expansion with the parameters

m := m, D := (−, 0, . . . , 0), s := 2, Q :=

(1, 2, 2, 1) if Ci+1 = 1,

(1, 2, 1, 2) if Ci+1 = 2.

As we can easily see using the associated array, this expansion does not yield any
monochromatic simplices at all, thus it is exhaustive:

A =
1 0 · · · 0

1 0 · · · 0
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1
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Figure 4.16: The move to eliminate a unit in a two-dimensional path. Only the relevant
simplex σm of the path is shown.

0 1 0

m

0
0

0

m + 1

Figure 4.17: Height graph before and after eliminating a unit.

And because it increases the length by two, we end up with a still admissible (and even
atomic) path. Also, we succeeded at our goal of making the flip to a 1 occur at an odd
position, as can be seen in Figures 4.14 and 4.15 on page 54.

Eliminate a unit We assume the same situation as for the move that flattens a unit,
only this time we require m to be odd. By applying that move, we can easily force it to
be odd if needed. Eliminating a unit then is a vertex expansion with the parameters∗

m := i, D := (0, 0, 1, 1, . . . , 1), Q := (1, 0, 1, 0).

This expansion creates exactly two 0-monochromatic simplices, as can be seen using the
associated array:

A =
1 0 0 · · · 0

0 0 1 · · · 1

M(A) = {(1, 0, 0, . . . , 0)︸ ︷︷ ︸
α1

, (1, 1, 0, . . . , 0)︸ ︷︷ ︸
α2

}

They are both on-path: For α1 choosing i = 3 yields (q1, . . . , qi) = (1, 0, 1) and thus
#(j, (1, 0, 1) = δj,1 = α1(j) for all j ∈ [n]. For α2 we can choose i = 2 and get
#(j, (1, 0)) = δj,0 + δj,1 = α(j). This is consistent with the geometric picture given
in Figure 4.16.

∗[Koz15] differs by setting Q := (0, 1, 0, 1), which is illegal because Cm−1 = 1 6= 0 = q1.
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α(0) α(1) α(2) α(3) i (q1, . . . , qi)}
on-path, first half
(α(Cm) = 0⇒ i 6 s)

1 1 0 0 2 (1, 0)
1 1 0 1 3 (1, 0, 3) }

on-path, second half
(α(Cm) = 1⇒ i > s)

1 0 1 1 4 (1, 0, 3, 1)
1 1 1 1 3 (1, 0, 3) }

off-path pair 11 0 0 0
1 0 0 1 }

off-path pair 2
1 0 1 0
1 1 1 0

Table 4.18: Analysis of monochromatic simplices occurring in the move to shorten
generic zeros.

0 0 0 0
0 0 0

0

Figure 4.19: Height graph before and after shortening generic zeros.

Together, the moves to flatten and to eliminate units enable us to reduce every low
admissible path to a form where the height graph contains no horizontal edges labeled
with 1. We now only need to deal with horizontal edges labeled with 0, which is where
our last moves applies:

Shorten generic zeros Assume that V2 = V3 = V4 = 0 (and remember that V1 = 1
necessarily). This implies that 1 /∈ {C2, C3, C4} as per our earlier considerations that
Ri(P) = (1, 0, . . . , 0) for all i > 2 after applying S[n]-action. We can thus assume that
C = (0, 1, 2, C4, . . .) and C4 ∈ {1, 3}. In analogy to the plateau move, we first assume
that C4 = 3. In that case we apply an edge expansion with the parameters

m := 3, D := (0, 0,−, 0, 1, . . . , 1), Q := (1, 0, 3, 1, 0, 3), s := 3.

The relatively large number of zeros in D already indicates that this expansion will
create quite a few 0-monochromatic simplices, and indeed we have eight of them:

A =
1 0 0 0 0 · · · 0

0 0 0 0 1 · · · 1

M(A) = {(1, α(1), α(2), α(3), 0, . . . , 0) | α(1), α(2), α(3) ∈ [1]}
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0

1
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1
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Figure 4.20: The move shortening special zeros applied to a two-dimensional path
(clipped to the relevant simplices σ1 to σ4).

0 0 0 0
0

0

Figure 4.21: Height graph before and after shortening special zeros.

Half of these are on-path, half of them are not but pairable, as the analysis in Table 4.18 on
page 56 shows, thus the move to shorten generic zeros is exhaustive. It is also admissible,
because the 0-monochromatic ones appear at positions

(m− 1 + 2, m− 1 + 3, m + 3, m + 4) = (4, 5, 6, 7)

in P̃ according to Lemma 4.2 on page 46 and thus comprise three atomic paths.

Regrettably, this is the only move that cannot adequately be projected down to two
dimensions, because |{qi | 1 6 i 6 6} ∪ {Cm}| = 4 > 3, but the height graph is depicted
in Figure 4.19 on page 56.

Shorten special zeros In the same situation as the previous move, assume that C4 = 1.
We then apply an edge expansion with

m := 3, D := (0, 0,−, 1, 1, . . . , 1), Q := (1, 0, 0, 1), s := 2.

Under these circumstances, we only need to deal with four 0-monochromatic sim-
plices:

A =
1 0 0 0 0 · · · 0

0 0 0 1 1 · · · 1

M(A) = {(1, α(1), α(2), 0, . . . , 0) | α(1), α(2) ∈ [1]}

Their analysis is much easier: The two vertices of M(A) starting with (1, 1, . . .) are both
on-path, because for i = 2 we have #(j, (1, 0)) = δj,0 + δj,1 = α(j) for all j ∈ [n] − 2,
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whereas the two starting with (1, 0, . . .) are off-path as no prefix of Q contains an odd
number of zeros but an even number of ones. Thus, again according to Lemma 4.2 on
page 46, the 0-monochromatic simplices are at positions m− 1 + 2 = 4 and m + 2 = 5,
which (together with the still even length) makes the resulting path admissible and the
expansion exhaustive.

4.2.4 Reducibility of all paths

Theorem 4.5. For every admissible abstract simplex path P there is a sequence of exhaustive
edge or vertex expansions transforming it into a constant 0-path.

Proof. Using Lemma 4.4 on page 52 we can transform P into a low admissible path if
needed, enabling us to assume that maxi hi = 1. We then work on each atomic path
individually, applying the move to flatten a unit as long as there are any even units
(positions with Vm = 1, m > 1 even) and then applying the move to eliminate a unit.
This again yields multiple atomic paths, on each of which we apply the move to shorten
zeros until no single atomic path has a length greater than four.

Now up to S[n]-action, there is only one atomic abstract simplex path of length four,
namely P = ((0, 1, 0), (1, 0, 0). It can be split further into two paths of length two by an
edge expansion with parameters

m := 2, D := (0,−, 1, . . . , 1), Q := (0, 0), s := 1.

We see that

A =
1 0 0 · · · 0

0 0 1 · · · 1

M(A) = {(1, 0, 0, . . . , 0), (1, 1, 0, . . . , 0)}

Both monochromatic simplices are on-path with the choice of i = 1, putting them at
positions m− 1 + 1 = 2 and m + 1 = 3 according to Lemma 4.2 on page 46. As the
resulting path still has length four, all simplices are 0-monochromatic.

As we saw earlier, the edge and vertex expansions do not modify the boundary of a geo-
metric simplex path, and all exhaustive expansions generate superfluous 0-monochro-
matic simplices only in pairs. Hence, every atomic geometric simplex path can be
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subdivided such that every monochromatic n-simplex is 0-monochromatic and paired
to a neighboring 0-monochromatic n-simplex. These trivial atomic paths were already
handled on page 34, thus we eliminated all monochromaticities in the path, proving
Theorem 4.1 on page 31.

4.2.5 Complexity

We will have a quick look at how many subdivisions or, equivalently, moves it takes to
reduce a low admissible path to a 0-path.

First, we needed to change the parity of some positions i with Vi = 1 using the move
to flatten a unit. Simply because only half the positions could possibly have the wrong
parity, an upper bound for the number of applications of this move is `/2, each extending
the path by two, so we end up with a path of length at most `+ 2 `/2 = 2`.

Then we applied the move to eliminate a unit to every position with Vi = 1. The number
of these positions did not change by the application of the moves to flatten a unit, so we
might as well consider their number in the original path. Because we are dealing with
low admissible paths, at most every second flip can have Vi = 1, thus again, we apply
this move at most `/2 times, each extending by two simplices again, resulting in a path
of length at most 2`+ 2 `/2 = 3`.

Finally, we needed to shorten the zeros. As this move is always applied to the start of
a path, we see that each application of that moves generates a path of length 4 and an
atomic tail that is two simplices shorter than the input was, thus we can apply this move
at most `/2 times as well.

These resulting paths of length 4 can be turned first into trivial atomic paths and then
into non-monochromatic simplices using two consecutive subdivisions, thus every
admissible path can be demonochromatized using 3/2`+ 2 subdivisions.

The complexity of reducing an arbitrary atomic path to a low admissible path is more
difficult to estimate. First, we note that we decrease the height graph “layer by layer”,
each time reducing its maximum height by one. The number of simplices with the
maximal height h is limited by `− 2h− 1, because at least hi flips have to precede as
well as follow the simplex σi.

Thus, to reduce the height of the path by one, we might have to execute the summit
move `/2− h times, because every simplex could be the top of a summit. Or we might
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1 1h

h + 1 `− h

Figure 4.22: Height graph of a simplex path that needs the most subdivisions to turn it
into a low admissible path.

have to execute the plateau move `− 2h− 1 times, if there are no summits at all, and
the summit move once at the end after we made a summit out of the plateau. While
a combination of these moves might be necessary as well, the number of moves will
surely lie in between. So reducing the height by one takes at most `− 2h subdivisions.
Regrettably, it also extends the path by up to 2`− 4h + 2 simplices: Each summit move
extends the path by four, each (generic) plateau move by two simplices.

This shows that reducing the maximal height one more can be much more complex, as
the path length could have doubled in the worst case. Our estimation is that it takes
O(`h) subdivisions to reduce an atomic path to a low admissible path, where h is the
maximal height of the original path of length `. Note that h itself is bounded by n− 1,
so you could also assume a worst case complexity of O(`n−1).

An example where this actually applies can be easily constructed: Given h > 2 and
` > 2h + 2, set n = h + 1. The abstract atomic path then is constructed with

V = (

`−h−1︷ ︸︸ ︷
1, . . . , 1,

h︷ ︸︸ ︷
0, . . . , 0)

C = (1, 2, . . . , h, Ch+1, . . . , C`−1−h, 1, 2, . . . , h)

where Ch+1, . . . , C`−1−h can be chosen arbitrarily from {1, . . . , h} (obeying the no-backflip
condition). Note that Ci 6= 0 and thus ei

0 = 0 for all i ∈ {1, . . . , `}. Hence no simplex is
1-monochromatic, making the path atomic if and only if ` is even. The resulting height
graph is depicted in Figure 4.22.
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While both of the algorithms in Chapter 4 pick some point in the path and modify it
locally in order to make the original path more beneficial in some terms, be it length or
height, we will now attempt a more global approach to demonochromatizing simplex
paths.

If we were trying to optimize the number of standard chromatic subdivisions needed
to eliminate monochromatic simplices in a path, it seems beneficial to use as much of
each subdivision as possible. A full standard chromatic subdivision is not possible,
because one of the conditions on the subdivisions we make is that the boundary of
the path must not be modified. But we are allowed to do a vertex expansion or basic
chromatic subdivision of each n-simplex in the path, as it only affects its interior, and
we are allowed to subdivide the gluing (n − 1)-simplices afterwards. The result of
both subdivisions combined can be seen in Figure 5.1 for dimension two. Note that for
reasons of clarity we did not subdivide the first and last n-simplices as well as the first
and last gluing (n− 1)-simplices. They are all 0-monochromatic anyway and we gain
nothing from subdividing them.

Concerning the coloring on the newly created vertices, we simply choose to color all of
them with zero, because this causes a maximal amount of 0-monochromatic n-simplices
in the subdivision. This way, chances are high that we can construct a complete pairing

Figure 5.1: The global subdivision of a simplex path of dimension 2.
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(a) The simplices in the orange and red pairs
are not neighboring, but connecting them
by a simple and regular path is possible.

(b) The four red simplices in the middle can-
not be matched in a way simple enough to
make the further steps trivial.

Figure 5.2: Two problematic situations that can arise. Non-0-monochromatic simplices
are grayed out. A possible matching of neighboring simplices is indicated by
a surrounding border and lighter strokes separating them, whereas matchings
of non-neighboring simplices are indicated by colors. While other matchings
are possible, none will be perfect.

0

1

2

(1, 1, 1)

(3, 3, 1)

(1, 2, 0)

Figure 5.3: Examples of the naming convention in the subdivision of one simplex.

of neighboring 0-monochromatic n-simplices, which we already know how to deal with
(cf. Figure 4.4 on page 34).

Unfortunately, this naïve approach does not work by itself in many cases. Even in two
dimensions, special cases occur, as they do in Figure 5.2. We will not be able to give full
solutions to these problems, but begin to develop terminology and possible directions to
head to.

In analogy to Proposition 2.5 on page 12, we can describe every n-simplex in our
subdivision by an [n]-tuple with values from [3] (or equivalently a map α : [n] → [3]),
where 0 and 1 have their usual meaning of outer and inner vertices, whereas 2 and 3
indicate that the vertex with the corresponding name is chosen to be in one of the two
edge expansions. An example of this notation is given in Figure 5.3.
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(1, 0, 0)→ (1, 2, 2)

(0, 0, 1)→ (3, 3, 1)

Figure 5.4: Neighboring relations of the global subdivision in two dimensions as a graph.
In the hypercube of dimension three, two vertices at unit vectors have been
replaced by hypercubes of dimension two minus their origin.

Obviously not all of these combinations are valid. Let us assume that the names that are
flipped are 0 and n (if we look at the m-th simplex of an abstract simplicial path, this
is equivalent to Cm−1 = 0 and Cm = n), making their opposite faces the ones that get
subdivided by the edge expansion. Then the set of all n-simplices can be written as

( ([1][n] − (0, . . . , 0)) (basic chromatic subdivision)

∪ {1} × {0, 2}[n]−0 (edge expansion of σm−1,m)

∪ {0, 3}[n−1] × {1} (edge expansion of σm,m+1)

)\{(1, 0, . . . , 0), (0, . . . , 0, 1)} (these get subdivided by the edge expansions)

We note that there are 2n+1 − 3 + 2n − 1 + 2n − 1 = 2n+2 − 5 n-simplices in the subdivi-
sion of each original n-simplex.

Sadly, the neighboring conditions are not as easy as before, which makes an approach like
the exhaustive expansion much more difficult. As with the basic chromatic subdivision,
two given simplices share an (n− 1)-face when their corresponding tuples differ in only
one position. But because we now have a more difficult set, simply changing the tuple
at one position does not necessarily yield a valid simplex again. Considered as a graph,
we earlier dealt with a hypercube minus the origin for the basic chromatic subdivision.
Now, we have to replace the entry and exit simplices (1, 0, . . . , 0) and (0, . . . , 0, 1) with
hypercubes of one dimension lower (again minus their origin). An example can be seen
in Figure 5.4.
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6 Conclusion, Outlook

We have seen how to construct a chromatic subdivision of a single n-simplex that
contains n-simplices-monochromatic, but equally many of the two possible orientations,
in Chapter 3. These n-simplices were matched by so called atomic simplex paths that we
continued to subdivide in two different ways in Sections 4.1 and 4.2, ending up without
any n-simplices-monochromatic.

Both algorithms to subdivide the simplex paths had a similar structure: They both
worked in iterations to modify the input path locally, where one iteration of the one
cuts the input path into several shorter ones, while one iteration of the other lowers
the maximal height of the input path. Both had to deal with many corner cases, and
while the first one that we described in Section 4.1 is more efficient most of the time in
terms of how many subdivisions and thus rounds it needs, that is O(n) compared to
O(`n−1), the one described in Section 4.2 is easier to understand as a whole and more
convincingly reveals that it really works in every case.

Finally, we saw that another approach might be possible as well which would not
modify the input path locally, but subdivide it globally in more or less the same way.
This approach would promise an even easier and more convincing way to eliminate
the monochromaticities of atomic simplex paths. However, issues remain with that
approach that could be approached in future work.

Furthermore, we note again that the overall strategy of first constructing monochromatic
simplices of opposite orientation and then matching them with simplex paths has its
limits in terms of round complexity set by the difficulty of finding these simplex paths
without intersections. If the global difficulty of O(nq+3) shown in [ACHP13] was to be
seriously decreased, a totally new strategy has to be developed that does not rely on
simplex paths.
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